IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2083-d769875.html
   My bibliography  Save this article

A Novel Solution Method for the Distribution Network Reconfiguration Problem Based on a Search Mechanism Enhancement of the Improved Harmony Search Algorithm

Author

Listed:
  • Josephy Dias Santos

    (Electrical, Mechanical and Computer Engineering School, Federal University of Goias, Av. Universitária, No. 1488, Goiania 74605-010, Brazil)

  • Frederico Marques

    (Electrical, Mechanical and Computer Engineering School, Federal University of Goias, Av. Universitária, No. 1488, Goiania 74605-010, Brazil)

  • Lina Paola Garcés Negrete

    (Electrical, Mechanical and Computer Engineering School, Federal University of Goias, Av. Universitária, No. 1488, Goiania 74605-010, Brazil)

  • Gelson A. Andrêa Brigatto

    (Electrical, Mechanical and Computer Engineering School, Federal University of Goias, Av. Universitária, No. 1488, Goiania 74605-010, Brazil)

  • Jesús M. López-Lezama

    (Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Medellin 050010, Colombia)

  • Nicolás Muñoz-Galeano

    (Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Medellin 050010, Colombia)

Abstract

This paper addresses the problem of Distribution Systems Reconfiguration (DSR), which consists of finding the state of switching devices (open or closed) in a given distribution network, aiming to minimize active power loses. DSR is modeled as a mixed-integer non-linear optimization problem, in which the integer variables represent the state of the switches, and the continuous variables represent the power flowing through the branches. Given the multi-modal and non-convex nature of the problem, an improved harmony search (IHS) algorithm is proposed to solve the DSR problem. The main novelty of this approach is the inclusion of a Path Relinking phase which accelerates convergence of the DSR problem. Several tests were carried out in four benchmark distribution systems, evidencing the effectiveness and applicability of the proposed approach.

Suggested Citation

  • Josephy Dias Santos & Frederico Marques & Lina Paola Garcés Negrete & Gelson A. Andrêa Brigatto & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2022. "A Novel Solution Method for the Distribution Network Reconfiguration Problem Based on a Search Mechanism Enhancement of the Improved Harmony Search Algorithm," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2083-:d:769875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santos Coelho, Leandro dos & de Andrade Bernert, Diego Luis, 2009. "An improved harmony search algorithm for synchronization of discrete-time chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2526-2532.
    2. Sergio Danilo Saldarriaga-Zuluaga & Jesús María López-Lezama & Nicolás Muñoz-Galeano, 2020. "Optimal Coordination of Overcurrent Relays in Microgrids Considering a Non-Standard Characteristic," Energies, MDPI, vol. 13(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2023. "Optimal Feeder Reconfiguration and Placement of Voltage Regulators in Electrical Distribution Networks Using a Linear Mathematical Model," Sustainability, MDPI, vol. 15(1), pages 1-20, January.
    2. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    3. Mohammed Alqahtani & Ponnusamy Marimuthu & Veerasamy Moorthy & B. Pangedaiah & Ch. Rami Reddy & M. Kiran Kumar & Muhammad Khalid, 2023. "Investigation and Minimization of Power Loss in Radial Distribution Network Using Gray Wolf Optimization," Energies, MDPI, vol. 16(12), pages 1-15, June.
    4. Min Zhu & Saber Arabi Nowdeh & Aspassia Daskalopulu, 2023. "An Improved Human-Inspired Algorithm for Distribution Network Stochastic Reconfiguration Using a Multi-Objective Intelligent Framework and Unscented Transformation," Mathematics, MDPI, vol. 11(17), pages 1-23, August.
    5. Zifa Liu & Jieyu Li & Yunyang Liu & Puyang Yu & Junteng Shao, 2022. "Collaborative Optimized Operation Model of Multi-Character Distribution Network Considering Multiple Uncertain Factors and Demand Response," Energies, MDPI, vol. 15(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amaya, Ivan & Cruz, Jorge & Correa, Rodrigo, 2015. "Harmony Search algorithm: a variant with Self-regulated Fretwidth," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1127-1152.
    2. Salima Abeid & Yanting Hu & Feras Alasali & Naser El-Naily, 2022. "Innovative Optimal Nonstandard Tripping Protection Scheme for Radial and Meshed Microgrid Systems," Energies, MDPI, vol. 15(14), pages 1-29, July.
    3. Faraj Al-Bhadely & Aslan İnan, 2023. "Improving Directional Overcurrent Relay Coordination in Distribution Networks for Optimal Operation Using Hybrid Genetic Algorithm with Sequential Quadratic Programming," Energies, MDPI, vol. 16(20), pages 1-21, October.
    4. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.
    5. Ahmed M. Agwa & Attia A. El-Fergany, 2023. "Protective Relaying Coordination in Power Systems Comprising Renewable Sources: Challenges and Future Insights," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    6. Aayush Shrivastava & Abhishek Sharma & Manjaree Pandit & Vibhu Jately & Brian Azzopardi, 2021. "Hybrid Protection Scheme Based Optimal Overcurrent Relay Coordination Strategy for RE Integrated Power Distribution Grid," Energies, MDPI, vol. 14(21), pages 1-19, November.
    7. Ronald C. Matthews & Trupal R. Patel & Adam K. Summers & Matthew J. Reno & Shamina Hossain-McKenzie, 2021. "Per-Phase and 3-Phase Optimal Coordination of Directional Overcurrent Relays Using Genetic Algorithm," Energies, MDPI, vol. 14(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2083-:d:769875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.