IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i5p3234-3241.html
   My bibliography  Save this article

A new method for chaos control in communication systems

Author

Listed:
  • Lin, Shih-Lin
  • Tung, Pi-Cheng

Abstract

With the increasing needs of global communication, the improvement of secure communication is of vital importance. This study proposes a new scheme for establishing secure communication systems. The new scheme separates white Gaussian noises from the chaotic signals with modified Independent Component Analysis (ICA) and then controls each chaotic signal. This scheme is able to deal with white Gaussian noises in the natural world. However, the signals separated by traditional ICA shows opposite phase and unequal amplitude, making chaos control impossible. Our study proposed a modified ICA, which can calculate accurately the phase and amplitude and ensure control of the chaotic systems. The result indicates that our proposed system can successfully separate white Gaussian noise and stabilize all the chaotic signals.

Suggested Citation

  • Lin, Shih-Lin & Tung, Pi-Cheng, 2009. "A new method for chaos control in communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3234-3241.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3234-3241
    DOI: 10.1016/j.chaos.2009.04.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909004421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.04.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junwei & Zhou, Tianshou, 2007. "Chaos synchronization based on contraction principle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 163-170.
    2. Park, Ju H., 2006. "Chaos synchronization between two different chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 549-554.
    3. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Huang, De-Xian & Tang, Fang, 2007. "Control and synchronization of chaotic systems by differential evolution algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 412-419.
    4. Yau, Her-Terng, 2007. "Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1357-1365.
    5. Uçar, Ahmet & Lonngren, Karl E. & Bai, Er-Wei, 2006. "Synchronization of the unified chaotic systems via active control," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1292-1297.
    6. Chien, Tsun-I & Liao, Teh-Lu, 2005. "Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 241-255.
    7. Mahmoud, Gamal M. & Aly, Shaban A. & Farghaly, Ahmed A., 2007. "On chaos synchronization of a complex two coupled dynamos system," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 178-187.
    8. Yan, Jun-Juh & Yang, Yi-Sung & Chiang, Tsung-Ying & Chen, Ching-Yuan, 2007. "Robust synchronization of unified chaotic systems via sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 947-954.
    9. Wang, Jiang & Zhang, Ting & Che, Yanqiu, 2007. "Chaos control and synchronization of two neurons exposed to ELF external electric field," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 839-850.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng-Hsiag Hsiao, 2017. "Optimal fuzzy control of exponential synchronisation via genetic algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1569-1580, June.
    2. Kajbaf, Amin & Akhaee, Mohammad Ali & Sheikhan, Mansour, 2016. "Fast synchronization of non-identical chaotic modulation-based secure systems using a modified sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 84(C), pages 49-57.
    3. Feng-Hsiag Hsiao, 2016. "A neural-network-based exponential synchronisation for chaotic secure communication via improved genetic algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3149-3166, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    2. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.
    3. López-Gutiérrez, R.M. & Posadas-Castillo, C. & López-Mancilla, D. & Cruz-Hernández, C., 2009. "Communicating via robust synchronization of chaotic lasers," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 277-285.
    4. Wu, Quanjun & Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2009. "Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2706-2715.
    5. Zribi, Mohamed & Smaoui, Nejib & Salim, Haitham, 2009. "Synchronization of the unified chaotic systems using a sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3197-3209.
    6. Santos Coelho, Leandro dos & de Andrade Bernert, Diego Luis, 2009. "An improved harmony search algorithm for synchronization of discrete-time chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2526-2532.
    7. Posadas-Castillo, C. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2009. "Experimental realization of synchronization in complex networks with Chua’s circuits like nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1963-1975.
    8. Sun, Yeong-Jeu, 2009. "An exponential observer for the generalized Rossler chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2457-2461.
    9. Zhao, Yang, 2009. "Synchronization of two coupled systems of J-J type using active sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3035-3041.
    10. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    11. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    12. Goharrizi, Amin Yazdanpanah & Khaki-Sedigh, Ali & Sepehri, Nariman, 2009. "Observer-based adaptive control of chaos in nonlinear discrete-time systems using time-delayed state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2448-2455.
    13. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    14. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    15. Qin, Weiyang & Yang, Yongfen & Kang, Zhaohui & Ren, Xingmin, 2009. "Controlling chaos and response of dynamical system by synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1466-1473.
    16. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    17. Zaher, Ashraf A., 2009. "An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2804-2814.
    18. Chien, Tsun-I & Hung, Yung-Ching & Liao, Teh-Lu, 2006. "A non-correlator-based digital communication system using interleaved chaotic differential peaks keying (I-CDPK) modulation and chaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 965-977.
    19. Eisencraft, Marcio & Baccalá, Luiz Antonio, 2008. "The Cramer-Rao bound for initial conditions estimation of chaotic orbits," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 132-139.
    20. Sun, Yeong-Jeu, 2009. "A simple observer of the generalized Chen chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1641-1644.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3234-3241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.