IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i2p1126-1135.html
   My bibliography  Save this article

Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI

Author

Listed:
  • Asemani, Mohammad Hassan
  • Majd, Vahid Johari

Abstract

In this paper, a new method for the stabilization of dynamic output-feedback synchronization of chaotic systems is proposed using T–S fuzzy models of the drive and response systems. The proposed design minimizes the L2 gain of the fuzzy control system with respect to a bounded disturbance that is a function of the drive system states. The design is based on the concept of dynamic parallel distributed compensation (DPDC). The resulting stability conditions are converted into a set of linear matrix inequalities (LMIs), which can be solved to obtain the fuzzy controller parameters. The effectiveness of the proposed synchronization method is demonstrated in an example.

Suggested Citation

  • Asemani, Mohammad Hassan & Majd, Vahid Johari, 2009. "Stability of output-feedback DPDC-based fuzzy synchronization of chaotic systems via LMI," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1126-1135.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1126-1135
    DOI: 10.1016/j.chaos.2009.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909001209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Chao-Chung & Chen, Chieh-Li, 2008. "Robust chaotic control of Lorenz system by backstepping design," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 598-608.
    2. Kousaka, Takuji & Ueta, Tetsushi & Ma, Yue & Kawakami, Hiroshi, 2006. "Control of chaos in a piecewise smooth nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1019-1025.
    3. Chen, Juhn-Horng, 2008. "Controlling chaos and chaotification in the Chen–Lee system by multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 843-852.
    4. Zheng, Yongai & Chen, Guanrong, 2009. "Fuzzy impulsive control of chaotic systems based on TS fuzzy model," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 2002-2011.
    5. Zhang, Qunjiao & Lu, Jun-an, 2008. "Chaos synchronization of a new chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 175-179.
    6. Hou, Yi-You & Liao, Teh-Lu & Yan, Jun-Juh, 2007. "H∞ synchronization of chaotic systems using output feedback control design," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 81-89.
    7. Hyun, Chang-Ho & Kim, Jae-Hun & Kim, Euntai & Park, Mignon, 2006. "Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 930-940.
    8. Park, Ju H., 2005. "Adaptive synchronization of hyperchaotic Chen system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 959-964.
    9. Park, Ju H., 2005. "Adaptive synchronization of Rossler system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 333-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vafamand, Navid & Khorshidi, Shapour & Khayatian, Alireza, 2018. "Secure communication for non-ideal channel via robust TS fuzzy observer-based hyperchaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 116-124.
    2. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "On anti-synchronization of chaotic systems via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 170-179.
    2. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    3. Li, Damei & Wu, Xiaoqun & Lu, Jun-an, 2009. "Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1290-1296.
    4. Yassen, M.T., 2008. "Synchronization hyperchaos of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 465-475.
    5. Wu, Xianyong & Zhang, Hongmin, 2009. "Synchronization of two hyperchaotic systems via adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2268-2273.
    6. Chang, Wei-Der, 2006. "Parameter identification of Rossler’s chaotic system by an evolutionary algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1047-1053.
    7. Shen, Liqun & Wang, Mao, 2008. "Robust synchronization and parameter identification on a class of uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 106-111.
    8. Behzad, Mehdi & Salarieh, Hassan & Alasty, Aria, 2008. "Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1295-1304.
    9. Lei, Youming & Xu, Wei & Shen, Jianwei & Fang, Tong, 2006. "Global synchronization of two parametrically excited systems using active control," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 428-436.
    10. Tutueva, Aleksandra & Moysis, Lazaros & Rybin, Vyacheslav & Zubarev, Alexander & Volos, Christos & Butusov, Denis, 2022. "Adaptive symmetry control in secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Soong, C.Y. & Huang, W.T. & Lin, F.P., 2007. "Chaos control on autonomous and non-autonomous systems with various types of genetic algorithm-optimized weak perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1519-1537.
    12. El-Gohary, Awad, 2006. "Optimal synchronization of Rössler system with complete uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 345-355.
    13. Wang, Xingyuan & Wang, Mingjun, 2008. "A hyperchaos generated from Lorenz system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3751-3758.
    14. Rongwei Guo & Yaru Zhang & Cuimei Jiang, 2021. "Synchronization of Fractional-Order Chaotic Systems with Model Uncertainty and External Disturbance," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    15. Sun, Fengyun & Zhao, Yi & Zhou, Tianshou, 2007. "Identify fully uncertain parameters and design controllers based on synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1677-1682.
    16. Gao, Tiegang & Chen, Zengqiang & Yuan, Zhuzhi & Yu, Dongchuan, 2007. "Adaptive synchronization of a new hyperchaotic system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 922-928.
    17. Yu, Wenwu & Cao, Jinde, 2007. "Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 467-482.
    18. Ge, Zheng-Ming & Yang, Cheng-Hsiung, 2009. "Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 994-1002.
    19. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Huang, De-Xian & Tang, Fang, 2007. "Control and synchronization of chaotic systems by differential evolution algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 412-419.
    20. Park, Ju H., 2007. "Adaptive controller design for modified projective synchronization of Genesio–Tesi chaotic system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1154-1159.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1126-1135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.