IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i9p1770-1784.html
   My bibliography  Save this article

Stochastic chaos synchronization using Unscented Kalman–Bucy Filter and sliding mode control

Author

Listed:
  • Heydari, Mahdi
  • Salarieh, Hassan
  • Behzad, Mehdi

Abstract

This paper presents an algorithm for synchronizing two different chaotic systems by using a combination of Unscented Kalman–Bucy Filter (UKBF) and sliding mode controller. It is assumed that the drive chaotic system is perturbed by white noise and shows stochastic chaotic behavior. In addition the output of the system does not contain the whole state variables of the system, and it is also affected by some independent white noise. By combining the UKBF and the sliding mode control, a synchronizing control law is proposed. Simulation results show the ability of the proposed method in synchronizing chaotic systems in presence of noise.

Suggested Citation

  • Heydari, Mahdi & Salarieh, Hassan & Behzad, Mehdi, 2011. "Stochastic chaos synchronization using Unscented Kalman–Bucy Filter and sliding mode control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1770-1784.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:9:p:1770-1784
    DOI: 10.1016/j.matcom.2011.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847541100053X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2006. "Chaos synchronization between two different chaotic dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 549-554.
    2. Salarieh, Hassan & Alasty, Aria, 2008. "Adaptive chaos synchronization in Chua's systems with noisy parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 233-241.
    3. Dadras, Sara & Momeni, Hamid Reza, 2010. "Adaptive sliding mode control of chaotic dynamical systems with application to synchronization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2245-2257.
    4. Salarieh, Hassan & Shahrokhi, Mohammad, 2008. "Adaptive synchronization of two different chaotic systems with time varying unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 125-136.
    5. Ayati, Moosa & Khaloozadeh, Hamid, 2009. "A stable adaptive synchronization scheme for uncertain chaotic systems via observer," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2473-2483.
    6. Behzad, Mehdi & Salarieh, Hassan & Alasty, Aria, 2008. "Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1295-1304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mobayen, Saleh & Majd, Vahid Johari & Sojoodi, Mahdi, 2012. "An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 85(C), pages 1-10.
    2. Torres, Lizeth & Besançon, Gildas & Georges, Didier & Verde, Cristina, 2012. "Exponential nonlinear observer for parametric identification and synchronization of chaotic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 836-846.
    3. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dadras, Sara & Momeni, Hamid Reza, 2010. "Adaptive sliding mode control of chaotic dynamical systems with application to synchronization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2245-2257.
    2. Santos Coelho, Leandro dos & de Andrade Bernert, Diego Luis, 2009. "An improved harmony search algorithm for synchronization of discrete-time chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2526-2532.
    3. Ahmad Sami Bataineh & Osman Rasit Isik & Moa’ath Oqielat & Ishak Hashim, 2021. "An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    4. Shahverdiev, E.M. & Bayramov, P.A. & Shore, K.A., 2009. "Cascaded and adaptive chaos synchronization in multiple time-delay laser systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 180-186.
    5. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    6. Pal, Pikaso & Mukherjee, V. & Alemayehu, Hinsermu & Jin, Gang Gyoo & Feyisa, Gosa, 2021. "Generalized adaptive backstepping sliding mode control for synchronizing chaotic systems with uncertainties and disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 793-807.
    7. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    8. Chen, Mou & Chen, Wen-hua, 2009. "Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2716-2724.
    9. Ayati, Moosa & Khaloozadeh, Hamid, 2009. "A stable adaptive synchronization scheme for uncertain chaotic systems via observer," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2473-2483.
    10. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    11. Zhang, Yu & Feng, Zhi Guo & Yang, Xinsong & Alsaadi, Fuad E. & Ahmad, Bashir, 2018. "Finite-time stabilization for a class of nonlinear systems via optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 14-26.
    12. Wu, Quanjun & Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2009. "Impulsive control and synchronization of chaotic Hindmarsh–Rose models for neuronal activity," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2706-2715.
    13. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.
    14. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    15. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    16. Chih-Hsueh Lin & Guo-Hsin Hu & Jun-Juh Yan, 2021. "Estimation of Synchronization Errors between Master and Slave Chaotic Systems with Matched/Mismatched Disturbances and Input Uncertainty," Mathematics, MDPI, vol. 9(2), pages 1-15, January.
    17. Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.
    18. Noorani, M.S.M. & Hashim, I. & Ahmad, R. & Bakar, S.A. & Ismail, E.S. & Zakaria, A.M., 2007. "Comparing numerical methods for the solutions of the Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1296-1304.
    19. Nguyen, Le Hoa & Hong, Keum-Shik, 2011. "Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 590-603.
    20. Behzad, Mehdi & Salarieh, Hassan & Alasty, Aria, 2008. "Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1295-1304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:9:p:1770-1784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.