IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v423y2022ics0096300322000960.html
   My bibliography  Save this article

Emergence of Turing patterns and dynamic visualization in excitable neuron model

Author

Listed:
  • Mondal, Arnab
  • Upadhyay, Ranjit Kumar
  • Mondal, Argha
  • Sharma, Sanjeev Kumar

Abstract

This article is focused on studying the spatially extended reaction-diffusion system with a diagonal diffusion matrix in a bounded domain for a biophysically motivated excitable model. Diffusion induces spontaneous stationary patterns in the spatially extended homogeneous medium. We investigate the dynamics of the diffusively coupled network modulated by a Hindmarsh–Rose prototype model that describes the emergence of self-excited spiking activities with certain parameters and a constant injected stimulus. The linear stability analysis in this framework around the homogeneous steady states illustrates the emergence of stationary patterns. Turing domains are reported in the parameter space where Hopf bifurcation is determined. The bifurcation diagram helps us in understanding the transition mechanism in the spatial system. We have investigated the existence of Turing–Hopf bifurcation and established how Hopf and Turing curves divide the parameter space into three different dynamically significant regions. We have also studied the existence of Hopf bifurcation in the spatiotemporal system. Theoretically, the amplitude equations are derived by means of nonlinear multiple-scale analysis method and analyzed near the Hopf and Turing instabilities in the system. In particular, we observe asymptotic expressions for a wide range of various patterns (stationary, hexagonal, mixed-state) sustained by the spatial system. We obtain the explicit conditions to establish the structural transitions and stability of the diverse forms of these Turing patterns. These results reveal how the diffusive network evolves. To establish the results, the analytical derivations are demonstrated that are corroborated by numerical simulations of the corresponding diffusion induced system. Finally, we observe that the coupled excitable systems participate in a collective behavior that may contribute significantly to irregular neural dynamics associated with certain brain pathologies.

Suggested Citation

  • Mondal, Arnab & Upadhyay, Ranjit Kumar & Mondal, Argha & Sharma, Sanjeev Kumar, 2022. "Emergence of Turing patterns and dynamic visualization in excitable neuron model," Applied Mathematics and Computation, Elsevier, vol. 423(C).
  • Handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000960
    DOI: 10.1016/j.amc.2022.127010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Iqbal, Naveed & Wu, Ranchao & Liu, Biao, 2017. "Pattern formation by super-diffusion in FitzHugh–Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 245-258.
    3. Zheng, Qianqian & Shen, Jianwei, 2020. "Turing instability induced by random network in FitzHugh-Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    4. Aksentijevic, Aleksandar & Mihailović, Anja & Mihailović, Dragutin T., 2021. "A novel approach to the study of spatio-temporal brain dynamics using change-based complexity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    7. Rory G Townsend & Pulin Gong, 2018. "Detection and analysis of spatiotemporal patterns in brain activity," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-29, December.
    8. Parastesh, Fatemeh & Rajagopal, Karthikeyan & Alsaadi, Fawaz E. & Hayat, Tasawar & Pham, V.-T. & Hussain, Iqtadar, 2019. "Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 377-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Fateev, I. & Polezhaev, A., 2024. "Chimera states in a lattice of superdiffusively coupled neurons," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    5. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Tah, Forwah Amstrong & Tabi, Conrad Bertrand & Kofane, Timoléon Crépin, 2021. "Pattern formation in the Fitzhugh–Nagumo neuron with diffusion relaxation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    7. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    8. Yao, Zhao & Wang, Chunni, 2022. "Collective behaviors in a multiple functional network with hybrid synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    9. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Jules Tagne Fossi & Vandi Deli & Hélène Carole Edima & Zeric Tabekoueng Njitacke & Florent Feudjio Kemwoue & Jacques Atangana, 2022. "Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-17, April.
    12. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Zheng, Qianqian & Shen, Jianwei, 2020. "Turing instability induced by random network in FitzHugh-Nagumo model," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    16. El-Nabulsi, Rami Ahmad & Anukool, Waranont, 2024. "Spiral waves in fractal dimensions and their elimination in λ − ω systems with less damaging intervention," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    17. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    18. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.