IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003540.html
   My bibliography  Save this article

Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit

Author

Listed:
  • Huang, Guodong
  • Zhou, Shu
  • Zhu, Rui
  • Wang, Yunhai
  • Chai, Yuan

Abstract

Chaotic systems have potential applications in secure communication and image encryption. The FitzHugh-Nagumo (FHN) neuron circuit model, as one of the most important models for neuron modelling, has a good chaotic discharge mode. On this basis, a controllable FHN piezoelectric neuron circuit is designed in this paper. By adjusting the state of the switch on or off, the circuit model can produce three different operating modes. The results show that the dynamic state of the system is determined by external stimuli, internal parameters of the system, and the number and nature of the external driving sources. More drivers can provide more chaos parameters. By converting different working modes, we can generate chaotic sequences with high randomness under different parameters. We found that when multiple drivers work together, the system output is more complex, and there is competition between dynamics induced by different drivers in the system. The addition of chaotic current makes the output discharge of the system produce chaotic resonance and pseudo-chaotic mode, which greatly improves the complexity of the sequence. This provides a new method for generating chaotic sequences with high randomness. Our work lays a theoretical foundation for the optimization of chaotic encryption algorithms in the future. In the future, we will further explore the effects of chaotic current stimulation with different properties. We hope that these findings will provide new insights into the security of information communications.

Suggested Citation

  • Huang, Guodong & Zhou, Shu & Zhu, Rui & Wang, Yunhai & Chai, Yuan, 2024. "Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003540
    DOI: 10.1016/j.chaos.2024.114802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oren Amsalem & Guy Eyal & Noa Rogozinski & Michael Gevaert & Pramod Kumbhar & Felix Schürmann & Idan Segev, 2020. "An efficient analytical reduction of detailed nonlinear neuron models," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    4. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    5. Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Minati, L. & Gambuzza, L.V. & Thio, W.J. & Sprott, J.C. & Frasca, M., 2020. "A chaotic circuit based on a physical memristor," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. Xu, Quan & Wang, Kai & Chen, Mo & Parastesh, Fatemeh & Wang, Ning, 2024. "Bursting and spiking activities in a Wilson neuron circuit with memristive sodium and potassium ion channels," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Li, Yongxin & Li, Chunbiao & Li, Yaning & Moroz, Irene & Yang, Yong, 2024. "A joint image encryption based on a memristive Rulkov neuron with controllable multistability and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    6. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Hu, Yongbing & Li, Qian & Ding, Dawei & Jiang, Li & Yang, Zongli & Zhang, Hongwei & Zhang, Zhixin, 2021. "Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    10. Ngamsa Tegnitsap, J.V. & Fotsin, H.B. & Megam Ngouonkadi, E.B., 2021. "Magnetic coupling based control of a chaotic circuit: Case of the van der Pol oscillator coupled to a linear circuit," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    12. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    13. Rocha, Ronilson & Medrano-T, Rene Orlando, 2022. "Chua circuit based on the exponential characteristics of semiconductor devices," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    14. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    17. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    18. Bingol, Harun & Alatas, Bilal, 2023. "Chaos enhanced intelligent optimization-based novel deception detection system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    19. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    20. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.