IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v455y2023ics0096300323003004.html
   My bibliography  Save this article

Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling

Author

Listed:
  • Wu, Fuqiang
  • Guo, Yitong
  • Ma, Jun
  • Jin, Wuyin

Abstract

Some electronic components including memristors and Josephson junctions have potential application to mimic biological neurons or synapses characteristics. In this paper, an equivalent circuit is designed by using two memristive Josephson junctions coupled by a resistor and two inductors. The energy function in an isolated memristive Josephson junction is obtained by using the generalized Hamiltonian formalism. The equivalent circuit can reproduce bursting activities similar with that of neuron by using numerical simulation. Further, the coupling memristive Josephson junctions can reach in-phase and antiphase synchronization under the interplay between resistive and magnetic couplings. The synchronous behaviors are analyzed by discerning the interspike interval of phase difference and average Hamilton energy. The obtained results confirmed the application of Josephson junction in designing bursting neuron-like devices, which are effective to explore dynamics of larger-scale neuromorphic network with different coupling schemes.

Suggested Citation

  • Wu, Fuqiang & Guo, Yitong & Ma, Jun & Jin, Wuyin, 2023. "Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling," Applied Mathematics and Computation, Elsevier, vol. 455(C).
  • Handle: RePEc:eee:apmaco:v:455:y:2023:i:c:s0096300323003004
    DOI: 10.1016/j.amc.2023.128131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323003004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Guodong & Xue, Yuxiong & Li, Yuwei & Ma, Jun, 2019. "Field coupling benefits signal exchange between Colpitts systems," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 45-54.
    2. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Baysal, Veli & Yilmaz, Ergin, 2020. "Effects of electromagnetic induction on vibrational resonance in single neurons and neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Yan & Wu, Fuqiang & Wang, Qingyun, 2024. "Dynamics and stability of neural systems with indirect interactions involved energy levels," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Wu, Fuqiang & Kang, Ting & Shao, Yan & Wang, Qingyun, 2023. "Stability of Hopfield neural network with resistive and magnetic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Wafo Tekam, Raoul Blaise & Kengne, Jacques & Djuidje Kenmoe, Germaine, 2019. "High frequency Colpitts’ oscillator: A simple configuration for chaos generation," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 351-360.
    4. Zhan, Feibiao & Su, Jianzhong & Liu, Shenquan, 2023. "Canards dynamics to explore the rhythm transition under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Xing, Miaomiao & Song, Xinlin & Wang, Hengtong & Yang, Zhuoqin & Chen, Yong, 2022. "Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    8. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    9. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    11. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    12. Liu, Zhilong & Zhou, Ping & Ma, Jun & Hobiny, Aatef & Alzahrani, Faris, 2020. "Autonomic learning via saturation gain method, and synchronization between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    16. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    18. Xu, Ying & Ren, Guodong & Ma, Jun, 2023. "Patterns stability in cardiac tissue under spatial electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:455:y:2023:i:c:s0096300323003004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.