IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923013097.html
   My bibliography  Save this article

Social adaptive behavior and oscillatory prevalence in an epidemic model on evolving random geometric graphs

Author

Listed:
  • Panicker, Akhil
  • Sasidevan, V.

Abstract

Our recent experience with the COVID-19 pandemic amply shows that spatial effects like the mobility of agents and average interpersonal distance, together with the adaptation of agents, are very important in deciding the outcome of epidemic dynamics. Structural and dynamical aspects of random geometric graphs are widely employed in describing processes with a spatial dependence, such as the spread of an airborne disease. In this work, we investigate the interplay between spatial factors, such as agent mobility and average interpersonal distance, and the adaptive responses of individuals to an ongoing epidemic within the framework of random geometric graphs. We show that such spatial factors, together with the adaptive behavior of the agents in response to the prevailing level of global epidemic, can give rise to oscillatory prevalence even with the classical SIR framework. We characterize in detail the effects of social adaptation and mobility of agents on the disease dynamics and obtain the threshold values. We also study the effects of delayed adaptive response of agents on epidemic dynamics. We show that a delay in executing non-pharmaceutical spatial mitigation strategies can amplify oscillatory prevalence tendencies and can have non-linear effects on peak prevalence. This underscores the importance of early implementation of adaptive strategies coupled with the dissemination of real-time prevalence information to manage and control the epidemic effectively.

Suggested Citation

  • Panicker, Akhil & Sasidevan, V., 2024. "Social adaptive behavior and oscillatory prevalence in an epidemic model on evolving random geometric graphs," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923013097
    DOI: 10.1016/j.chaos.2023.114407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923013097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serina Chang & Emma Pierson & Pang Wei Koh & Jaline Gerardin & Beth Redbird & David Grusky & Jure Leskovec, 2021. "Mobility network models of COVID-19 explain inequities and inform reopening," Nature, Nature, vol. 589(7840), pages 82-87, January.
    2. Cornes, F.E. & Frank, G.A. & Dorso, C.O., 2022. "COVID-19 spreading under containment actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    4. Melin, Patricia & Monica, Julio Cesar & Sanchez, Daniela & Castillo, Oscar, 2020. "Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Triambak, S. & Mahapatra, D.P., 2021. "A random walk Monte Carlo simulation study of COVID-19-like infection spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    6. Michael te Vrugt & Jens Bickmann & Raphael Wittkowski, 2020. "Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Leonardo López & Xavier Rodó, 2020. "The end of social confinement and COVID-19 re-emergence risk," Nature Human Behaviour, Nature, vol. 4(7), pages 746-755, July.
    8. Loring J. Thomas & Peng Huang & Fan Yin & Xiaoshuang Iris Luo & Zack W. Almquist & John R. Hipp & Carter T. Butts, 2020. "Spatial heterogeneity can lead to substantial local variations in COVID-19 timing and severity," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(39), pages 24180-24187, September.
    9. Shengjie Lai & Nick W. Ruktanonchai & Liangcai Zhou & Olivia Prosper & Wei Luo & Jessica R. Floyd & Amy Wesolowski & Mauricio Santillana & Chi Zhang & Xiangjun Du & Hongjie Yu & Andrew J. Tatem, 2020. "Effect of non-pharmaceutical interventions to contain COVID-19 in China," Nature, Nature, vol. 585(7825), pages 410-413, September.
    10. Glenn Ellison, 2020. "Implications of Heterogeneous SIR Models for Analyses of COVID-19," NBER Working Papers 27373, National Bureau of Economic Research, Inc.
    11. Sun, Qingyi & Wang, Zhishuang & Zhao, Dawei & Xia, Chengyi & Perc, Matjaž, 2022. "Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Ronan F Arthur & James H Jones & Matthew H Bonds & Yoav Ram & Marcus W Feldman, 2021. "Adaptive social contact rates induce complex dynamics during epidemics," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-17, February.
    13. Ventura, Paulo Cesar & Aleta, Alberto & Rodrigues, Francisco A. & Moreno, Yamir, 2022. "Epidemic spreading in populations of mobile agents with adaptive behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    14. Danish A Ahmed & Ali R Ansari & Mudassar Imran & Kamal Dingle & Michael B Bonsall, 2021. "Mechanistic modelling of COVID-19 and the impact of lockdowns on a short-time scale," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-20, October.
    15. Anupama Sharma & Shakti N Menon & V Sasidevan & Sitabhra Sinha, 2019. "Epidemic prevalence information on social networks can mediate emergent collective outcomes in voluntary vaccine schemes," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-18, May.
    16. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Chen & Fengli Xu & Zhenyu Han & Kun Tang & Pan Hui & James Evans & Yong Li, 2022. "Strategic COVID-19 vaccine distribution can simultaneously elevate social utility and equity," Nature Human Behaviour, Nature, vol. 6(11), pages 1503-1514, November.
    2. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Hannah Howland & Vadim Keyser, 2023. "Built environment as interface: a relation-based framework for the intersections between built, biotic, social, and health processes during COVID-19 and beyond," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-20, December.
    5. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    6. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    7. Xiaoyan Mu & Xiaohu Zhang & Anthony Gar-On Yeh & Yang Yu & Jiejing Wang, 2023. "Structural Changes in Human Mobility Under the Zero-COVID Strategy in China," Environment and Planning B, , vol. 50(9), pages 2527-2542, November.
    8. Ben R. Craig & Tom Phelan & Jan-Peter Siedlarek, 2021. "Modeling Behavioral Responses to COVID-19," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2021(05), pages 1-6, March.
    9. Lorenzo Amir Nemati Fard & Michele Starnini & Michele Tizzoni, 2023. "Modeling adaptive forward-looking behavior in epidemics on networks," Papers 2301.04947, arXiv.org.
    10. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Kang, Liujiang, 2023. "Interaction between travel restriction policies and the spread of COVID-19," Transport Policy, Elsevier, vol. 136(C), pages 209-227.
    11. Ben R. Craig & Tom Phelan & Jan-Peter Siedlarek & Jared Steinberg, 2020. "Improving Epidemic Modeling with Networks," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2020(23), pages 1-8, September.
    12. Tianyi Li & Jiawen Luo & Cunrui Huang, 2021. "Urban Epidemic Hazard Index for Chinese Cities: Why Did Small Cities Become Epidemic Hotspots?," Papers 2103.05189, arXiv.org.
    13. Zihao Yang & Ramayya Krishnan & Beibei Li, 2024. "The Interplay Between Individual Mobility, Health Risk, and Economic Choice: A Holistic Model for COVID-19 Policy Intervention," INFORMS Joural on Data Science, INFORMS, vol. 3(1), pages 6-27, April.
    14. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    15. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    16. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    17. Teruhiko Yoneyama & Sanmay Das & Mukkai Krishnamoorthy, 2012. "A Hybrid Model for Disease Spread and an Application to the SARS Pandemic," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-5.
    18. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    20. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923013097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.