IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000601.html
   My bibliography  Save this article

Epidemic spreading in populations of mobile agents with adaptive behavioral response

Author

Listed:
  • Ventura, Paulo Cesar
  • Aleta, Alberto
  • Rodrigues, Francisco A.
  • Moreno, Yamir

Abstract

Despite the advanced stage of epidemic modeling, there is a major demand for methods to incorporate behavioral responses to the spread of a disease, such as social distancing and adoption of prevention methods. Mobility plays an important role on epidemic dynamics and is also affected by behavioral changes, but there are many situations in which real mobility data is incomplete or inaccessible. We present a model for epidemic spreading in temporal networks of mobile agents that incorporates local behavioral responses. Susceptible agents are allowed to move towards the opposite direction of infected agents in their neighborhood. We show that this mechanism considerably decreases the stationary prevalence when the spatial density of agents is low. However, for higher densities, the mechanism causes an abrupt phase transition, where a new bistable phase appears. We develop a semi-analytic approach for the case when the mobility is fast compared to the disease dynamics, and use it to argue that the bistability is caused by the emergence of spatial clusters of susceptible agents. Finally, we characterize the temporal networks formed in the fast mobility regime, showing how the degree distributions and other metrics are affected by the behavioral mechanism. Our work incorporates results previously known from adaptive networks into population of mobile agents, which can be further developed to be used in mobility-driven models.

Suggested Citation

  • Ventura, Paulo Cesar & Aleta, Alberto & Rodrigues, Francisco A. & Moreno, Yamir, 2022. "Epidemic spreading in populations of mobile agents with adaptive behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000601
    DOI: 10.1016/j.chaos.2022.111849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, M.C & Herrmann, H.J, 2004. "Scaling of the propagation of epidemics in a system of mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 741-748.
    2. Zhou, Jie & Liu, Zonghua, 2009. "Epidemic spreading in communities with mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1228-1236.
    3. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabrick, Enrique C. & Sayari, Elaheh & Protachevicz, Paulo R. & Szezech, José D. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Viana, Ricardo L. & Caldas, Iberê L. & Batista, , 2023. "Unpredictability in seasonal infectious diseases spread," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Panicker, Akhil & Sasidevan, V., 2024. "Social adaptive behavior and oscillatory prevalence in an epidemic model on evolving random geometric graphs," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    2. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    3. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    4. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    5. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    6. Mark Kibanov & Raphael H. Heiberger & Simone Rödder & Martin Atzmueller & Gerd Stumme, 2019. "Social studies of scholarly life with sensor-based ethnographic observations," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1387-1428, June.
    7. Masoud Shakiba & Azam Zavvari & Nader Aleebrahim & Mandeep Jit Singh, 2016. "Evaluating the academic trend of RFID technology based on SCI and SSCI publications from 2001 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 591-614, October.
    8. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    9. Massimo Riccaboni & Anna Romiti & Gianna Giudicati, 2011. "Co-experience Network Dynamics: Lessons from the Dance Floor," DISA Working Papers 2011/02, Department of Computer and Management Sciences, University of Trento, Italy, revised 28 Mar 2011.
    10. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    11. Mikaela Irene D. Fudolig & Daniel Monsivais & Kunal Bhattacharya & Hang-Hyun Jo & Kimmo Kaski, 2020. "Different patterns of social closeness observed in mobile phone communication," Journal of Computational Social Science, Springer, vol. 3(1), pages 1-17, April.
    12. Teruyoshi Kobayashi & Taro Takaguchi, 2017. "Significant ties: Identifying relationship lending in temporal interbank networks," Discussion Papers 1717, Graduate School of Economics, Kobe University.
    13. José F. Fontanari, 2023. "Stochastic Simulations of Casual Groups," Mathematics, MDPI, vol. 11(9), pages 1-16, May.
    14. Matthew Baggetta & Brad R. Fulton & Zoe Caplan, 2022. "Space and Interaction in Civil Society Organizations: An Exploratory Study in a US City," Social Inclusion, Cogitatio Press, vol. 10(3), pages 307-318.
    15. Dun, Han & Shuting, Yan & She, Han & Lingfei, Qian & Chris, Ampimah Benjamin, 2019. "Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 311-318.
    16. Yao, Yiyang & Zhou, Yinzuo, 2017. "Epidemic spreading on dual-structure networks with mobile agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 218-225.
    17. Nan Zhang & Boni Su & Pak-To Chan & Te Miao & Peihua Wang & Yuguo Li, 2020. "Infection Spread and High-Resolution Detection of Close Contact Behaviors," IJERPH, MDPI, vol. 17(4), pages 1-18, February.
    18. Helbing, Dirk & Balietti, Stefano, 2011. "Big data, privacy, and trusted web: What needs to be done," MPRA Paper 49702, University Library of Munich, Germany.
    19. Gamermann, Daniel & Antunes, Felipe Leite, 2018. "Statistical analysis of Brazilian electoral campaigns via Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 171-188.
    20. Masashi Komori & Kosuke Takemura & Yukihisa Minoura & Atsuhiko Uchida & Rino Iida & Aya Seike & Yukiko Uchida, 2022. "Extracting multiple layers of social networks through a 7-month survey using a wearable device: a case study from a farming community in Japan," Journal of Computational Social Science, Springer, vol. 5(1), pages 1069-1094, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.