IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v291y2016icp182-196.html
   My bibliography  Save this article

A complete analysis of the global dynamics of a diffusive predator and toxic prey model

Author

Listed:
  • Lv, Yun-fei
  • Li, Tongtong
  • Pei, Yongzhen
  • Yuan, Rong

Abstract

Considering many species can release toxic substances to protect themselves against predators, a diffusive predator and toxic prey system with spatial heterogeneity in predator and prey populations has been investigated. For this system, we give a complete and rigorous analysis of the global dynamics with the boundedness, globally asymptotical stability, transcritical bifurcation, Hopf bifurcation and its direction, and the stability of the bifurcating periodic solutions. Meanwhile, we consider the effects of toxins produced by the prey on the dynamic behavior. The consequence of the global stability of the coexistence equilibrium is that the toxin’s intrinsic characteristic will not change the stability of the system irreversibly. Our results show that the toxin-produced by the prey (phytoplankton) may be used as a bio-control agent for the Harmful Algal Bloom problems.

Suggested Citation

  • Lv, Yun-fei & Li, Tongtong & Pei, Yongzhen & Yuan, Rong, 2016. "A complete analysis of the global dynamics of a diffusive predator and toxic prey model," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 182-196.
  • Handle: RePEc:eee:apmaco:v:291:y:2016:i:c:p:182-196
    DOI: 10.1016/j.amc.2016.06.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316304118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.06.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Xiaosong & Song, Yongli, 2015. "Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator–prey model with herd behavior," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 375-391.
    2. Roy, Shovonlal, 2009. "The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy," Theoretical Population Biology, Elsevier, vol. 75(1), pages 68-75.
    3. Shi, Hong-Bo & Li, Yan, 2015. "Global asymptotic stability of a diffusive predator–prey model with ratio-dependent functional response," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 71-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jia-Fang & Wang, Shaoli & Kong, Xiangjun, 2018. "Effects of toxin delay on the dynamics of a phytoplankton–zooplankton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1150-1162.
    2. Jiang, Zhichao & Zhang, Tongqian, 2017. "Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 693-704.
    3. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    4. Arancibia-Ibarra, Claudio & Aguirre, Pablo & Flores, José & van Heijster, Peter, 2021. "Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    5. Zhao, Xin & Zeng, Zhijun, 2020. "Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Han, Renji & Dai, Binxiang, 2017. "Spatiotemporal dynamics and spatial pattern in a diffusive intraguild predation model with delay effect," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 177-201.
    7. Wang, Caiyun, 2015. "Rich dynamics of a predator–prey model with spatial motion," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 1-9.
    8. Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
    9. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
    10. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2022. "Stability of spatial patterns in a diffusive oxygen–plankton model with time lag effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 109-123.
    11. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    12. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    13. Chen, Jianxin & Zhang, Tonghua & Zhou, Yongwu, 2020. "Dynamics of a risk-averse newsvendor model with continuous-time delay in supply chain financing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 169(C), pages 133-148.
    14. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    15. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    16. Lv, Yehu, 2022. "The spatially homogeneous hopf bifurcation induced jointly by memory and general delays in a diffusive system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Javidi, Mohammad & Ahmad, Bashir, 2015. "Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system," Ecological Modelling, Elsevier, vol. 318(C), pages 8-18.
    18. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    19. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Chen, Mengxin & Wu, Ranchao & Liu, Hongxia & Fu, Xiaoxue, 2021. "Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:291:y:2016:i:c:p:182-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.