IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005422.html
   My bibliography  Save this article

Predator-taxis creates spatial pattern of a predator-prey model

Author

Listed:
  • Chen, Mengxin
  • Zheng, Qianqian

Abstract

In this paper, we investigate the spatial pattern formation to a predator-prey model with the predator-taxis under the homogeneous zero-flux boundary conditions. Firstly, we employ the predator-taxis coefficient as the potential critical value of the Turing bifurcation to perform its role in forming the spatial pattern. One finds that there are multiple thresholds of the Turing bifurcation. Hereafter, we focus on the direction of the Turing bifurcation. To this end, the technique of the weakly nonlinear analysis is employed to deduce the amplitude equation near the threshold of the Turing bifurcation in one-dimensional space. It is found that the predator-taxis can create the subcritical or the supercritical Turing bifurcation. Finally, numerical experiments check the theoretical analysis well and obtain the spatial patterns with the different predator-taxis coefficients.

Suggested Citation

  • Chen, Mengxin & Zheng, Qianqian, 2022. "Predator-taxis creates spatial pattern of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005422
    DOI: 10.1016/j.chaos.2022.112332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Mengxin & Wu, Ranchao & Liu, Hongxia & Fu, Xiaoxue, 2021. "Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Chen, Mengxin & Srivastava, Hari Mohan, 2023. "Stability of bifurcating solution of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Ma, Yuanyuan & Dong, Nan & Liu, Na & Xie, Leilei, 2022. "Spatiotemporal and bifurcation characteristics of a nonlinear prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    4. Zhang, Huayong & Guo, Fenglu & Zou, Hengchao & Zhao, Lei & Wang, Zhongyu & Yuan, Xiaotong & Liu, Zhao, 2024. "Refuge-driven spatiotemporal chaos in a discrete predator-prey system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Chen, Mengxin & Zheng, Qianqian, 2023. "Diffusion-driven instability of a predator–prey model with interval biological coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Zhu, Linhe & Tang, Yuxuan & Shen, Shuling, 2023. "Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Chakraborty, Bhaskar & Ghorai, Santu & Bairagi, Nandadulal, 2020. "Reaction-diffusion predator-prey-parasite system and spatiotemporal complexity," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    10. Chen, Mengxin & Wu, Ranchao & Liu, Hongxia & Fu, Xiaoxue, 2021. "Spatiotemporal complexity in a Leslie-Gower type predator-prey model near Turing-Hopf point," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.