IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000541.html
   My bibliography  Save this article

Stability of bifurcating solution of a predator–prey model

Author

Listed:
  • Chen, Mengxin
  • Srivastava, Hari Mohan

Abstract

To explore the role of the prey-taxis in an ecological model, we investigate a predator–prey model with prey-taxis in this paper. Firstly, the local stability of the positive equilibrium and the occurrence conditions of the steady state bifurcation are given. Thereafter, we investigate the existence and stability of the bifurcating solution around the threshold. Precisely, by treating the prey-taxis constant ξ as the bifurcation parameter, we confirm the model possesses the steady state bifurcation at ξ=ξkS for k∈N0/{0}. Also, we set ξkS(ɛ)=ξkS+ɛξ1+ɛ2ξ2+⋅⋅⋅ for small ɛ>0. We show that ξ1=0 and ξ2 determines the stability of the bifurcating solution. Finally, the stable bifurcating solution is observed by using numerical experiments. The findings of this paper are: (i) the repulsive prey-taxis will facilitate the occurrence of the steady state bifurcation. (ii) the bifurcating solution is stable if ξ2<0 and it is unstable if ξ2>0.

Suggested Citation

  • Chen, Mengxin & Srivastava, Hari Mohan, 2023. "Stability of bifurcating solution of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000541
    DOI: 10.1016/j.chaos.2023.113153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pati, N.C. & Layek, G.C. & Pal, Nikhil, 2020. "Bifurcations and organized structures in a predator-prey model with hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Chen, Mengxin & Zheng, Qianqian, 2022. "Predator-taxis creates spatial pattern of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Yan, Xiao & Maimaiti, Yimamu & Yang, Wenbin, 2022. "Stationary pattern and bifurcation of a Leslie–Gower predator–prey model with prey-taxis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 163-192.
    4. Banda, Heather & Chapwanya, Michael & Dumani, Phindile, 2022. "Pattern formation in the Holling–Tanner predator–prey model with predator-taxis. A nonstandard finite difference approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 336-353.
    5. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivalingam, S M & Kumar, Pushpendra & Trinh, Hieu & Govindaraj, V., 2024. "A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 462-480.
    2. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Mengxin & Zheng, Qianqian, 2023. "Steady state bifurcation of a population model with chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Huisen Zhang, 2024. "Dynamics Behavior of a Predator-Prey Diffusion Model Incorporating Hunting Cooperation and Predator-Taxis," Mathematics, MDPI, vol. 12(10), pages 1-12, May.
    3. Vishwakarma, Krishnanand & Sen, Moitri, 2021. "Role of Allee effect in prey and hunting cooperation in a generalist predator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 622-640.
    4. Chou, Yen-hsi & Chow, Yunshyong & Hu, Xiaochuan & Jang, Sophia R.-J., 2021. "A Ricker–type predator–prey system with hunting cooperation in discrete time," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 570-586.
    5. Hossain, Mainul & Pati, N.C. & Pal, Saheb & Rana, Sourav & Pal, Nikhil & Layek, G.C., 2021. "Bifurcations and multistability in a food chain model with nanoparticles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 808-825.
    6. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    7. Garai, Shilpa & Pati, N.C. & Pal, Nikhil & Layek, G.C., 2022. "Organized periodic structures and coexistence of triple attractors in a predator–prey model with fear and refuge," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    8. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    9. Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    10. Yimamu Maimaiti & Wang Zhang & Ahmadjan Muhammadhaji, 2023. "Stationary Pattern and Global Bifurcation for a Predator–Prey Model with Prey-Taxis and General Class of Functional Responses," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    11. N. C. Pati, 2023. "Bifurcations and multistability in a physically extended Lorenz system for rotating convection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(8), pages 1-15, August.
    12. Uddin, Md. Jasim & Rana, Sarker Md. Sohel & Işık, Seval & Kangalgil, Figen, 2023. "On the qualitative study of a discrete fractional order prey–predator model with the effects of harvesting on predator population," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    13. Pandey, Soumik & Ghosh, Uttam & Das, Debashis & Chakraborty, Sarbani & Sarkar, Abhijit, 2024. "Rich dynamics of a delay-induced stage-structure prey–predator model with cooperative behaviour in both species and the impact of prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 49-76.
    14. Yanfei Du & Ben Niu & Junjie Wei, 2021. "Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect," Mathematics, MDPI, vol. 9(24), pages 1-40, December.
    15. Sk, Nazmul & Tiwari, Pankaj Kumar & Pal, Samares, 2022. "A delay nonautonomous model for the impacts of fear and refuge in a three species food chain model with hunting cooperation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 136-166.
    16. Bozkurt, Fatma & Yousef, Ali & Bilgil, Halis & Baleanu, Dumitru, 2023. "A mathematical model with piecewise constant arguments of colorectal cancer with chemo-immunotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 976-1002.
    18. Hossain, Mainul & Kumbhakar, Ruma & Pal, Nikhil, 2022. "Dynamics in the biparametric spaces of a three-species food chain model with vigilance," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.