IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v484y2025ics0096300324004788.html
   My bibliography  Save this article

Pattern dynamics of a Lotka-Volterra model with taxis mechanism

Author

Listed:
  • Chen, Mengxin

Abstract

This paper deals with the Turing bifurcation and pattern dynamics of a Lotka-Volterra model with the predator-taxis and the homogeneous no-flux boundary conditions. To investigate the pattern dynamics, we first give the occurrence conditions of the Turing bifurcation. It is found that there is no Turing bifurcation when predator-taxis disappears, while the Turing bifurcation occurs as predator-taxis is presented. Next, we establish the amplitude equation by virtue of weakly nonlinear analysis. Our theoretical result suggests the Lotka-Volterra model admits the supercritical or subcritical Turing bifurcation. In this manner, we can determine the stability of the bifurcating solution. Finally, some numerical simulation results verify the validity of the theoretical analysis. The stripe pattern, the mixed patterns, and wave patterns are performed. Interestingly, the stable stripe patterns will be broken and become wave patterns when the predator-taxis parameter is far from the Turing bifurcation critical point.

Suggested Citation

  • Chen, Mengxin, 2025. "Pattern dynamics of a Lotka-Volterra model with taxis mechanism," Applied Mathematics and Computation, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:apmaco:v:484:y:2025:i:c:s0096300324004788
    DOI: 10.1016/j.amc.2024.129017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsumoto, Akio & Szidarovszky, Ferenc, 2020. "Stability switching curves in a Lotka–Volterra competition system with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 422-438.
    2. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Ke, Yue & Zhu, Linhe & Wu, Peng & Shi, Lei, 2022. "Dynamics of a reaction-diffusion rumor propagation model with non-smooth control," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    4. Chen, Mengxin & Srivastava, Hari Mohan, 2023. "Stability of bifurcating solution of a predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Han & Jacqueline C. K. Lam & Victor O. K. Li & Jon Crowcroft, 2024. "Interpretable AI-driven causal inference to uncover the time-varying effects of PM2.5 and public health interventions on COVID-19 infection rates," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    2. Pan, Yuxuan & Zhu, Linhe, 2024. "Parameter identification method of information propagation models based on different network structures," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Zhu, Linhe & Zheng, Wenxin & Shen, Shuling, 2023. "Dynamical analysis of a SI epidemic-like propagation model with non-smooth control," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Yang, Junxiang & Lee, Dongsun & Kwak, Soobin & Ham, Seokjun & Kim, Junseok, 2024. "The Allen–Cahn model with a time-dependent parameter for motion by mean curvature up to the singularity," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Xiaojing Zhong & Yawen Zheng & Junxian Xie & Ying Xie & Yuqing Peng, 2024. "Multi-Agent Collaborative Rumor-Debunking Strategies on Virtual-Real Network Layer," Mathematics, MDPI, vol. 12(3), pages 1-22, January.
    6. Zhu, Linhe & Chen, Siyi & Shen, Shuling, 2024. "Pattern dynamics analysis of a reaction–diffusion network propagation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 425-444.
    7. Dong, Yafang & Huo, Liang’an, 2024. "A multi-scale mathematical model of rumor propagation considering both intra- and inter-individual dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    8. Sivalingam, S M & Kumar, Pushpendra & Trinh, Hieu & Govindaraj, V., 2024. "A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 462-480.
    9. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Pati, N.C. & Ghosh, Bapan, 2022. "Delayed carrying capacity induced subcritical and supercritical Hopf bifurcations in a predator–prey system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 195(C), pages 171-196.
    11. Yanchao Liu & Pengzhou Zhang & Lei Shi & Junpeng Gong, 2023. "A Survey of Information Dissemination Model, Datasets, and Insight," Mathematics, MDPI, vol. 11(17), pages 1-30, August.
    12. Xueying Shi & An Luo & Xiaoping Chen & Ying Huang & Chengdai Huang & Xin Yin, 2024. "The Dynamical Behaviors of a Fractional-Order Malware Propagation Model in Information Networks," Mathematics, MDPI, vol. 12(23), pages 1-12, December.
    13. Matsumoto, Akio & Szidarovszky, Ferenc, 2021. "Time delays and chaos in two competing species revisited," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    14. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:484:y:2025:i:c:s0096300324004788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.