IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923009360.html
   My bibliography  Save this article

The emergence of rich complex dynamics in a spatial dyadic game with resource storage, participation cost, and agent interaction propensity

Author

Listed:
  • Kabir, K.M. Ariful
  • Shahidul Islam, MD
  • Utsumi, Shinobu
  • Tanimoto, Jun

Abstract

We present an evolutionary game model combining subordinate elements from several viewpoints to address whether a resource-storing mechanism promotes a society where the wealthy engage in or refrain from conflict. The model is based on the pairwise game, which incorporates the accumulation of payoffs over time and introduces the concept of participation probability based on wealthiness. Our study encompasses four distinct game classes: Prisoner's Dilemma, Trivial, Stag Hunt, and Chicken. By incorporating these diverse social dilemma structures, we strive to comprehensively understand the dynamics within different game scenarios. Additionally, we broaden the scope of our analysis by considering two network types: a regular lattice network and a Barabasi-Albert scale-free (BA-SF) graph. Through simulation results, we have discovered that the commonly held belief or human philosophical wisdom that “the wealthy do not fight” leads to the emergence of a cooperative society, depending on the intensity of the dilemma. In contrast, our findings strongly suggest that the prevailing notion of “the wealthy do fight” fosters an imbalanced exploitation-based society where defectors who exploit the poor cooperators thrive. Further analysis shows variations in beliefs and dynamics between cooperators and defectors, highlighting the emergence of social dilemmas and the impact of payoff storage. Our result reported here proves that the proposed model based on a minimal spatial game setting by 2-player & 2-strategy game just added several subordinate components can reproduce rich, complex scenarios likely observed in a real human society.

Suggested Citation

  • Kabir, K.M. Ariful & Shahidul Islam, MD & Utsumi, Shinobu & Tanimoto, Jun, 2023. "The emergence of rich complex dynamics in a spatial dyadic game with resource storage, participation cost, and agent interaction propensity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009360
    DOI: 10.1016/j.chaos.2023.114035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Jung-Kyoo & Ahn, T.K., 2013. "Strategic reward and altruistic punishment support cooperation in a public goods game experiment," Journal of Economic Psychology, Elsevier, vol. 35(C), pages 17-30.
    2. Larry Samuelson, 2002. "Evolution and Game Theory," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 47-66, Spring.
    3. Francisco C Santos & Jorge M Pacheco & Tom Lenaerts, 2006. "Cooperation Prevails When Individuals Adjust Their Social Ties," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-8, October.
    4. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    5. Hang Ye & Fei Tan & Mei Ding & Yongmin Jia & Yefeng Chen, 2011. "Sympathy and Punishment: Evolution of Cooperation in Public Goods Game," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(4), pages 1-20.
    6. Wang, Jianwei & Chen, Wei & Yu, Fengyuan & He, Jialu & Xu, Wenshu, 2022. "Wealth-based rule favors cooperation in costly public goods games when individual selection is inevitable," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    7. Guo, Hao & Chu, Chen & Shen, Chen & Shi, Lei, 2018. "Reputation-based coevolution of link weights promotes cooperation in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 265-268.
    8. Hisashi Ohtsuki & Yoh Iwasa & Martin A. Nowak, 2009. "Indirect reciprocity provides only a narrow margin of efficiency for costly punishment," Nature, Nature, vol. 457(7225), pages 79-82, January.
    9. Utsumi, Shinobu & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "Does a resource-storing mechanism favor “the wealthy do not fight”?—An approach from evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    11. Chunpeng Du & Danyang Jia & Libin Jin & Lei Shi, 2018. "The impact of neutral reward on cooperation in public good game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(10), pages 1-6, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Zhewen & Dong, Yuting & Lu, Yikang & Shi, Lei, 2021. "Information exchange promotes and jeopardizes cooperation on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    2. Zheng, Junjun & Ren, Tianyu & Ma, Gang & Dong, Jinhui, 2021. "The emergence and implementation of pool exclusion in spatial public goods game with heterogeneous ability-to-pay," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Utsumi, Shinobu & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "Does a resource-storing mechanism favor “the wealthy do not fight”?—An approach from evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Zhenghong Wu & Huan Huang & Qinghu Liao, 2021. "The study on the role of dedicators on promoting cooperation in public goods game," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    5. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Li-Gao,, 2018. "Multigames with social punishment and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 164-170.
    6. Mike Farjam & Marco Faillo & Ida Sprinkhuizen-Kuyper & Pim Haselager, 2015. "Punishment Mechanisms and Their Effect on Cooperation: A Simulation Study," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(1), pages 1-5.
    7. Quan, Ji & Zhang, Xiyue & Chen, Wenman & Tang, Caixia & Wang, Xianjia, 2024. "Reputation-dependent social learning on the evolution of cooperation in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    8. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    9. Huang, Yi Jie & Deng, Zheng Hong & Song, Qun & Wu, Tao & Deng, Zhi Long & Gao, Ming yu, 2019. "The evolution of cooperation in multi-games with aspiration-driven updating rule," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 313-317.
    10. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    11. Li, Songjie & Bao, Wei & Dai, Yayun & Ye, Ye & Xie, Nenggang, 2022. "Emotional game and the evolution of cooperation considering the effects of reputation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    12. Deng, Lili & Zhang, Xingxing & Wang, Cheng, 2021. "Coevolution of spatial ultimatum game and link weight promotes fairness," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Deng, Lili & Wang, Hongsi & Wang, Rugen & Xu, Ronghua & Wang, Cheng, 2024. "The adaptive adjustment of node weights based on reputation and memory promotes fairness," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Wang, Qiuling & Meng, Haoran & Gao, Bo, 2019. "Spontaneous punishment promotes cooperation in public good game," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 183-187.
    15. Manapat, Michael L. & Nowak, Martin A. & Rand, David G., 2013. "Information, irrationality, and the evolution of trust," Journal of Economic Behavior & Organization, Elsevier, vol. 90(S), pages 57-75.
    16. Takesue, Hirofumi, 2021. "Symmetry breaking in the prisoner’s dilemma on two-layer dynamic multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    17. Yuzhen Li & Jun Luo & He Niu & Hang Ye, 2023. "When punishers might be loved: fourth-party choices and third-party punishment in a delegation game," Theory and Decision, Springer, vol. 94(3), pages 423-465, April.
    18. Zhenghong Wu & Yang Sun, 2022. "How to Treat Gossip in Internet Public Carbon Emission Reduction Projects?," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    19. Zhao, Jinhua & Wang, Xianjia & Niu, Lei & Gu, Cuiling, 2021. "Environmental feedback and cooperation in climate change dilemma," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    20. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.