IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004179.html
   My bibliography  Save this article

Does a resource-storing mechanism favor “the wealthy do not fight”?—An approach from evolutionary game theory

Author

Listed:
  • Utsumi, Shinobu
  • Tatsukawa, Yuichi
  • Tanimoto, Jun

Abstract

Motivated by an interdisciplinary question of whether a resource-storing mechanism favors “the wealthy do fight” or “the wealthy do not fight,” we establish a new model based on spatial prisoner's dilemma (SPD) game where a time-accumulating payoff is allowed, and the probability of game participation depending on wealthiness is introduced. Although the model is based on a universal framework, presuming SPDs as a template, the conclusion drawn from the model is interdisciplinary rich. Our simulation results reveal that the common sense (or say, human's philosophical wisdom) of “the wealthy do not fight” helps to emerge a fairly cooperative society depending on the dilemma strength. By contrast, remarkably, it suggests that the common sense of “the wealthy do fight” begets a skewed exploitation society where defectors who exploit poor cooperators prosper.

Suggested Citation

  • Utsumi, Shinobu & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "Does a resource-storing mechanism favor “the wealthy do not fight”?—An approach from evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004179
    DOI: 10.1016/j.chaos.2022.112207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of limited resources in the memory-based spatial evolutionary game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Wang, Jianwei & Chen, Wei & Yu, Fengyuan & He, Jialu & Xu, Wenshu, 2022. "Wealth-based rule favors cooperation in costly public goods games when individual selection is inevitable," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    4. Geng, Yini & Shen, Chen & Guo, Hao & Chu, Chen & Yu, Dalei & Shi, Lei, 2017. "Historical payoff promotes cooperation in voluntary prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 145-149.
    5. Alam, Muntasir & Nagashima, Keisuke & Tanimoto, Jun, 2018. "Various error settings bring different noise-driven effects on network reciprocity in spatial prisoner's dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 338-346.
    6. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabir, K.M. Ariful & Shahidul Islam, MD & Utsumi, Shinobu & Tanimoto, Jun, 2023. "The emergence of rich complex dynamics in a spatial dyadic game with resource storage, participation cost, and agent interaction propensity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2022. "Hybrid learning promotes cooperation in the spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Song, Zhao & Guo, Hao & Jia, Danyang & Perc, Matjaž & Li, Xuelong & Wang, Zhen, 2021. "Third party interventions mitigate conflicts on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Zhang, Hong, 2022. "Effects of stubborn players and noise on the evolution of cooperation in spatial prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    6. Wang, Jianwei & Wang, Rong & Yu, Fengyuan & Wang, Ziwei & Li, Qiaochu, 2020. "Learning continuous and consistent strategy promotes cooperation in prisoner’s dilemma game with mixed strategy," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    7. Kabir, K.M. Ariful & Shahidul Islam, MD & Utsumi, Shinobu & Tanimoto, Jun, 2023. "The emergence of rich complex dynamics in a spatial dyadic game with resource storage, participation cost, and agent interaction propensity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    8. Liu, Siyuan & Zhang, Chunyan & Li, Kun & Zhang, Jianlei, 2022. "Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Shi, Juan & Hu, Die & Tao, Rui & Peng, Yunchen & Li, Yong & Liu, Jinzhuo, 2021. "Interaction between populations promotes cooperation in voluntary prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    10. Han, Xu & Zhao, Xiaowei & Xia, Haoxiang, 2021. "Evolution of cooperation through aspiration-based adjustment of interaction range in spatial prisoner’s dilemma game," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    11. Takesue, Hirofumi, 2021. "Symmetry breaking in the prisoner’s dilemma on two-layer dynamic multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    12. Xu, Jiwei & Deng, Zhenghong & Gao, Bo & Song, Qun & Tian, Zhihong & Wang, Qiuling & Gao, Mingyu & Niu, Zhenxi, 2019. "Popularity-driven strategy updating rule promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 82-87.
    13. Zhu, Peican & Wang, Xiaoyu & Jia, Danyang & Guo, Yangming & Li, Shudong & Chu, Chen, 2020. "Investigating the co-evolution of node reputation and edge-strategy in prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    14. Xie, Yunya & Bai, Yu & Zhang, Yankun & Peng, Zhengyin, 2024. "Trust-induced cooperation under the complex interaction of networks and emotions," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    15. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    16. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    17. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    18. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    19. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    20. Aslihan Akdeniz & Matthijs van Veelen, 2019. "The cancellation effect at the group level," Tinbergen Institute Discussion Papers 19-073/I, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.