IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924001425.html
   My bibliography  Save this article

The adaptive adjustment of node weights based on reputation and memory promotes fairness

Author

Listed:
  • Deng, Lili
  • Wang, Hongsi
  • Wang, Rugen
  • Xu, Ronghua
  • Wang, Cheng

Abstract

In real-world social networks, individuals exhibit varying degrees of influence that evolve during their interactions. To address this dynamic nature of social influence, we provide a mechanism for adaptive node weight adjustment based on reputation within the ultimatum game model. In this model, an individual’s social influence is quantified through their node weight, which adapts in response to the comparison between their reputation and the average reputation of their network neighbors. In each game round, individual reputation is determined by the ratio of successfully satisfying the responder in the proposer role. Moreover, individuals maintain a memory of historical game information, leading to the consideration of an individual’s historical reputation. The calculation of individual reputation incorporates a modifiable parameter termed “memory strength”, representing the reputation ratio between current and previous rounds. Through Monte Carlo simulations, it is revealed that the coevolution of node weight and game strategy, combined with reputation-based adaptive adjustments, significantly enhances fairness. For a wide range of specific reputation strengths, an expanded node weight range fosters the emergence of fairness. However, without considering historical reputation, smaller node weight ranges result in higher fairness levels. Furthermore, memory strength proves pivotal in fairness evolution: smaller memory strength promotes fairness in smaller node weight ranges, while larger memory strength positively influences fairness evolution in larger weight ranges. Therefore, it is the combined influence of reputation memory strength and node weight range that affects fairness. Our findings shed light on the promotion mechanism of fairness from the perspective of node weight evolution, and emphasize the role of reputation in the spread of altruistic behaviors.

Suggested Citation

  • Deng, Lili & Wang, Hongsi & Wang, Rugen & Xu, Ronghua & Wang, Cheng, 2024. "The adaptive adjustment of node weights based on reputation and memory promotes fairness," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001425
    DOI: 10.1016/j.chaos.2024.114591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Feng & Li, Min & Liu, Xingwen, 2019. "Memory mechanism with weighting promotes cooperation in the evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 17-24.
    2. Tanimoto, Jun, 2009. "Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 953-960.
    3. Boles, Terry L. & Croson, Rachel T. A. & Murnighan, J. Keith, 2000. "Deception and Retribution in Repeated Ultimatum Bargaining," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(2), pages 235-259, November.
    4. Deng, Lili & Tang, Wansheng & Zhang, Jianxiong, 2011. "The coevolutionary ultimatum game on different network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4227-4235.
    5. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    6. Güth, Werner & Kocher, Martin G., 2014. "More than thirty years of ultimatum bargaining experiments: Motives, variations, and a survey of the recent literature," Journal of Economic Behavior & Organization, Elsevier, vol. 108(C), pages 396-409.
    7. Deng, Lili & Zhang, Xingxing & Wang, Cheng, 2021. "Coevolution of spatial ultimatum game and link weight promotes fairness," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    8. Zhou, Tianwei & Ding, Shuai & Fan, Wenjuan & Wang, Hao, 2016. "An improved public goods game model with reputation effect on the spatial lattices," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 130-135.
    9. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    10. Meng, Xiaokun & Sun, Shiwen & Li, Xiaoxuan & Wang, Li & Xia, Chengyi & Sun, Junqing, 2016. "Interdependency enriches the spatial reciprocity in prisoner’s dilemma game on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 388-396.
    11. Zhao, Yakun & Xiong, Tianyu & Zheng, Lei & Li, Yumeng & Chen, Xiaojie, 2020. "The effect of similarity on the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    13. Francisco C Santos & Jorge M Pacheco & Tom Lenaerts, 2006. "Cooperation Prevails When Individuals Adjust Their Social Ties," PLOS Computational Biology, Public Library of Science, vol. 2(10), pages 1-8, October.
    14. Zhang, Yanling & Yang, Shuo & Chen, Xiaojie & Bai, Yanbing & Xie, Guangming, 2023. "Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Zhang, Yanling & Chen, Xiaojie & Liu, Aizhi & Sun, Changyin, 2018. "The effect of the stake size on the evolution of fairness," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 641-653.
    16. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong & Liu, Geng-Geng, 2018. "Prisoner’s dilemma game on reputation-based weighted network," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 64-68.
    17. Miyaji, Kohei & Wang, Zhen & Tanimoto, Jun & Hagishima, Aya & Kokubo, Satoshi, 2013. "The evolution of fairness in the coevolutionary ultimatum games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 13-18.
    18. Ernst Fehr & Urs Fischbacher, 2003. "The nature of human altruism," Nature, Nature, vol. 425(6960), pages 785-791, October.
    19. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    20. Guo, Hao & Chu, Chen & Shen, Chen & Shi, Lei, 2018. "Reputation-based coevolution of link weights promotes cooperation in spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 265-268.
    21. Iwata, Manabu & Akiyama, Eizo, 2016. "Heterogeneity of link weight and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 224-234.
    22. Bo, Xianyu & Yang, Jianmei, 2010. "Evolutionary ultimatum game on complex networks under incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1115-1123.
    23. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    24. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    25. Deng, Lili & Lin, Ying & Wang, Cheng & Xu, Ronghua & Zhou, Gengui, 2020. "Effects of coupling strength and coupling schemes between interdependent lattices on the evolutionary ultimatum game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    26. Li, Dandan & Zhou, Kai & Sun, Mei & Han, Dun, 2023. "Investigating the effectiveness of individuals’ historical memory for the evolution of the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    27. Axel Ockenfels & Gary E. Bolton, 2000. "ERC: A Theory of Equity, Reciprocity, and Competition," American Economic Review, American Economic Association, vol. 90(1), pages 166-193, March.
    28. Zhi-Qin Ma & Cheng-Yi Xia & Shi-Wen Sun & Li Wang & Huai-Bin Wang & Juan Wang, 2011. "Heterogeneous Link Weight Promotes The Cooperation In Spatial Prisoner'S Dilemma," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(11), pages 1257-1268.
    29. Wang, Jianwei & He, Jialu & Yu, Fengyuan, 2021. "Heterogeneity of reputation increment driven by individual influence promotes cooperation in spatial social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    30. Chu, Chen & Zhai, Yao & Mu, Chunjiang & Hu, Die & Li, Tong & Shi, Lei, 2019. "Reputation-based popularity promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    31. Guth, Werner & Schmittberger, Rolf & Schwarze, Bernd, 1982. "An experimental analysis of ultimatum bargaining," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 367-388, December.
    32. Chu, Chen & Liu, Jinzhuo & Shen, Chen & Jin, Jiahua & Tang, Yunxuan & Shi, Lei, 2017. "Coevolution of game strategy and link weight promotes cooperation in structured population," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 28-32.
    33. M. N. Kuperman & S. Risau-Gusman, 2008. "The effect of the topology on the spatial ultimatum game," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(2), pages 233-238, March.
    34. Zhenhua Pei & Baokui Wang & Jinming Du, 2016. "Effects of income redistribution on the evolution of cooperation in spatial public goods games," Papers 1611.01531, arXiv.org.
    35. Cardinot, Marcos & Griffith, Josephine & O’Riordan, Colm, 2018. "A further analysis of the role of heterogeneity in coevolutionary spatial games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 116-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Lili & Zhang, Xingxing & Wang, Cheng, 2021. "Coevolution of spatial ultimatum game and link weight promotes fairness," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Zhao, Yakun & Xiong, Tianyu & Zheng, Lei & Li, Yumeng & Chen, Xiaojie, 2020. "The effect of similarity on the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Quan, Ji & Zhang, Xiyue & Chen, Wenman & Tang, Caixia & Wang, Xianjia, 2024. "Reputation-dependent social learning on the evolution of cooperation in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    4. Zheng, Lei & Li, Youqi & Zhou, Jingsai & Li, Yumeng, 2022. "The effect of celebrity on the evolution of fairness in the ultimatum game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    5. Deng, Lili & Tang, Wansheng & Zhang, Jianxiong, 2011. "The coevolutionary ultimatum game on different network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4227-4235.
    6. Wang, Le & Chen, Tong & Wu, Zhenghong, 2021. "Promoting cooperation by reputation scoring mechanism based on historical donations in public goods game," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    7. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    8. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    9. Zhang, Yanling & Yang, Shuo & Chen, Xiaojie & Bai, Yanbing & Xie, Guangming, 2023. "Reputation update of responders efficiently promotes the evolution of fairness in the ultimatum game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Pan, Qiuhui & Wang, Linpeng & He, Mingfeng, 2020. "Social dilemma based on reputation and successive behavior," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    11. Liu, Chengwei & Wang, Juan & Li, Xiaopeng & Xia, Chengyi, 2020. "The link weight adjustment considering historical strategy promotes the cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Wang, Lu & Ye, Shun-qiang & Jones, Michael C. & Ye, Ye & Wang, Meng & Xie, Neng-gang, 2015. "The evolutionary analysis of the ultimatum game based on the net-profit decision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 32-38.
    14. Werner Güth & Kerstin Pull & Manfred Stadler & Alexandra K. Zaby, 2017. "Blindfolded vs. Informed Ultimatum Bargaining – A Theoretical and Experimental Analysis," German Economic Review, Verein für Socialpolitik, vol. 18(4), pages 444-467, November.
    15. Güth, Werner & Kocher, Martin G., 2014. "More than thirty years of ultimatum bargaining experiments: Motives, variations, and a survey of the recent literature," Journal of Economic Behavior & Organization, Elsevier, vol. 108(C), pages 396-409.
    16. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    17. Bogliacino, Francesco & Codagnone, Cristiano, 2021. "Microfoundations, behaviour, and evolution: Evidence from experiments," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 372-385.
    18. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    19. Dehghani, Sedigheh & Nazarimehr, Fahimeh & Jafari, Sajad, 2021. "How can cultural conditions affect society’s decisions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    20. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Li-Gao,, 2018. "Multigames with social punishment and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 164-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.