IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s096007792300872x.html
   My bibliography  Save this article

Chaotic time series prediction of nonlinear systems based on various neural network models

Author

Listed:
  • Sun, Ying
  • Zhang, Luying
  • Yao, Minghui

Abstract

This paper discusses the chaos prediction of nonlinear systems using various neural networks based on the modified substructure data-driven modeling architecture. In the modeling step, we construct two-coefficient loss functions according to the linear multi-step method to improve the prediction accuracy of neural networks. Then, the predicted response data of the system is given by the forward Euler method and neural networks. Under such architecture, chaos forecasting is carried out on a five-degree-of-freedom duffing oscillator system via the feedforward neural network (FNN), long short-term memory (LSTM) network and LSTM encoder-decoder (LSTM ED). The numerical simulation results show that the model can predict chaotic time series even if a small amount of information and samples are known, and the prediction window is twice that of the observation window. Among these models, LSTM ED exhibits the highest accuracy in both short-term and long-term chaos prediction. Furthermore, the prediction results mainly involve three evaluation indicators: absolute error, mean absolute error, normalized root mean square error. Through error analysis and noise processing, LSTM ED shows superior stability, robustness and extrapolation ability. Its prediction error is about half of FNN and the maximum increase in accuracy is 71.3 %.

Suggested Citation

  • Sun, Ying & Zhang, Luying & Yao, Minghui, 2023. "Chaotic time series prediction of nonlinear systems based on various neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s096007792300872x
    DOI: 10.1016/j.chaos.2023.113971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300872X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangiorgio, Matteo & Dercole, Fabio & Guariso, Giorgio, 2021. "Forecasting of noisy chaotic systems with deep neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Cui, Zhiquan & Yan, Zhiqi & Zhao, Minghang & Zhong, Shisheng, 2022. "Gas path parameter prediction of aero-engine based on an autoregressive discrete convolution sum process neural network," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    3. J. Meiyazhagan & S. Sudharsan & M. Senthilvelan, 2021. "Model-free prediction of emergence of extreme events in a parametrically driven nonlinear dynamical system by deep learning," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-13, August.
    4. Recep Sinan Arslan & Necaattin Barışçı, 2019. "Development of Output Correction Methodology for Long Short Term Memory-Based Speech Recognition," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
    5. Fu, Ke & Li, He & Deng, Pengfei, 2022. "Chaotic time series prediction using DTIGNet based on improved temporal-inception and GRU," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Song, Yu & Akagi, Fumio, 2016. "Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock marketAuthor-Name: Qiu, Mingyue," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 1-7.
    7. Uribarri, Gonzalo & Mindlin, Gabriel B., 2022. "Dynamical time series embeddings in recurrent neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Cheng, Wei & Wang, Yan & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Zang, Shengyin & Liu, Hao & Cheng, Hao & Wu, Jiagui, 2021. "High-efficiency chaotic time series prediction based on time convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhmet, Marat & Tleubergenova, Madina & Zhamanshin, Akylbek, 2024. "Cohen-Grossberg neural networks with unpredictable and Poisson stable dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Miao, Hua & Zhu, Wei & Dan, Yuanhong & Yu, Nanxiang, 2024. "Chaotic time series prediction based on multi-scale attention in a multi-agent environment," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Hua & Zhu, Wei & Dan, Yuanhong & Yu, Nanxiang, 2024. "Chaotic time series prediction based on multi-scale attention in a multi-agent environment," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Miltiadis D. Lytras & Anna Visvizi, 2021. "Artificial Intelligence and Cognitive Computing: Methods, Technologies, Systems, Applications and Policy Making," Sustainability, MDPI, vol. 13(7), pages 1-3, March.
    3. Lampartová, Alžběta & Lampart, Marek, 2024. "Exploring diverse trajectory patterns in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    5. Erdinc Akyildirim & Aurelio F. Bariviera & Duc Khuong Nguyen & Ahmet Sensoy, 2022. "Forecasting high-frequency stock returns: a comparison of alternative methods," Annals of Operations Research, Springer, vol. 313(2), pages 639-690, June.
    6. Manel Hamdi & Walid Chkili, 2019. "An artificial neural network augmented GARCH model for Islamic stock market volatility: Do asymmetry and long memory matter?," Working Papers 13, Economic Research Forum, revised 21 Aug 2019.
    7. Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
    8. Niccolò Borghi & Giorgio Guariso & Matteo Sangiorgio, 2024. "Forecasting Convective Storms Trajectory and Intensity by Neural Networks," Forecasting, MDPI, vol. 6(2), pages 1-17, May.
    9. Serhii Vladov & Ruslan Yakovliev & Maryna Bulakh & Victoria Vysotska, 2024. "Neural Network Approximation of Helicopter Turboshaft Engine Parameters for Improved Efficiency," Energies, MDPI, vol. 17(9), pages 1-28, May.
    10. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
    11. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    12. Gourav Kumar & Uday Pratap Singh & Sanjeev Jain, 2022. "Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 991-1039, October.
    13. Faraz Sasani & Ramin Mousa & Ali Karkehabadi & Samin Dehbashi & Ali Mohammadi, 2023. "TM-vector: A Novel Forecasting Approach for Market stock movement with a Rich Representation of Twitter and Market data," Papers 2304.02094, arXiv.org.
    14. Ku, Seungmo & Lee, Changju & Chang, Woojin & Wook Song, Jae, 2020. "Fractal structure in the S&P500: A correlation-based threshold network approach," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    15. Zhang, Hai & Chen, Xinbin & Ye, Renyu & Stamova, Ivanka & Cao, Jinde, 2023. "Adaptive quasi-synchronization analysis for Caputo delayed Cohen–Grossberg neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 49-65.
    16. Chen, Xiaolu & Weng, Tongfeng & Li, Chunzi & Yang, Huijie, 2022. "Equivalence of machine learning models in modeling chaos," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Orang, Omid & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha, 2023. "Multi-output time series forecasting with randomized multivariate Fuzzy Cognitive Maps," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
    19. Xuan-Hong Dang & Syed Yousaf Shah & Petros Zerfos, 2019. ""The Squawk Bot": Joint Learning of Time Series and Text Data Modalities for Automated Financial Information Filtering," Papers 1912.10858, arXiv.org.
    20. Ehsan Hoseinzade & Saman Haratizadeh, 2018. "CNNPred: CNN-based stock market prediction using several data sources," Papers 1810.08923, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s096007792300872x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.