Chaotic time series prediction based on physics-informed neural operator
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115326
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cui, Zhiquan & Yan, Zhiqi & Zhao, Minghang & Zhong, Shisheng, 2022. "Gas path parameter prediction of aero-engine based on an autoregressive discrete convolution sum process neural network," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Vogl, Markus, 2022. "Controversy in financial chaos research and nonlinear dynamics: A short literature review," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Song, Yu & Akagi, Fumio, 2016. "Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock marketAuthor-Name: Qiu, Mingyue," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 1-7.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Ying & Zhang, Luying & Yao, Minghui, 2023. "Chaotic time series prediction of nonlinear systems based on various neural network models," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Ren, Jinfu & Liu, Yang & Liu, Jiming, 2023. "Chaotic behavior learning via information tracking," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
- Xuan-Hong Dang & Syed Yousaf Shah & Petros Zerfos, 2019. ""The Squawk Bot": Joint Learning of Time Series and Text Data Modalities for Automated Financial Information Filtering," Papers 1912.10858, arXiv.org.
- Erdinc Akyildirim & Aurelio F. Bariviera & Duc Khuong Nguyen & Ahmet Sensoy, 2022. "Forecasting high-frequency stock returns: a comparison of alternative methods," Annals of Operations Research, Springer, vol. 313(2), pages 639-690, June.
- Ehsan Hoseinzade & Saman Haratizadeh, 2018. "CNNPred: CNN-based stock market prediction using several data sources," Papers 1810.08923, arXiv.org.
- Manel Hamdi & Walid Chkili, 2019. "An artificial neural network augmented GARCH model for Islamic stock market volatility: Do asymmetry and long memory matter?," Working Papers 13, Economic Research Forum, revised 21 Aug 2019.
- Sujin Pyo & Jaewook Lee & Mincheol Cha & Huisu Jang, 2017. "Predictability of machine learning techniques to forecast the trends of market index prices: Hypothesis testing for the Korean stock markets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-17, November.
- Eva DEZSI & Ioan Alin NISTOR, 2016. "Can Deep Machine Learning Outsmart The Market? A Comparison Between Econometric Modelling And Long- Short Term Memory," Romanian Economic Business Review, Romanian-American University, vol. 11(4.1), pages 54-73, december.
- Chia-Cheng Chen & Yisheng Liu & Ting-Hsin Hsu, 2019. "An Analysis on Investment Performance of Machine Learning: An Empirical Examination on Taiwan Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 1-10.
- Chia-Cheng Chen & Chun-Hung Chen & Ting-Yin Liu, 2020. "Investment Performance of Machine Learning: Analysis of S&P 500 Index," International Journal of Economics and Financial Issues, Econjournals, vol. 10(1), pages 59-66.
- Serhii Vladov & Ruslan Yakovliev & Maryna Bulakh & Victoria Vysotska, 2024. "Neural Network Approximation of Helicopter Turboshaft Engine Parameters for Improved Efficiency," Energies, MDPI, vol. 17(9), pages 1-28, May.
- Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
- Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
- Duan, Yunlong & Mu, Chang & Yang, Meng & Deng, Zhiqing & Chin, Tachia & Zhou, Li & Fang, Qifeng, 2021. "Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms," International Journal of Production Economics, Elsevier, vol. 242(C).
- Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
- Lv, Chengkun & Lan, Zhu & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Intelligent ammonia precooling control for TBCC mode transition based on neural network improved equilibrium manifold expansion model," Energy, Elsevier, vol. 288(C).
- Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
More about this item
Keywords
Chaos prediction; Time series prediction; Neural operator; Deep learning; Physics-informed;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.