IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010907.html
   My bibliography  Save this article

AI-Lorenz: A physics-data-driven framework for Black-Box and Gray-Box identification of chaotic systems with symbolic regression

Author

Listed:
  • De Florio, Mario
  • Kevrekidis, Ioannis G.
  • Karniadakis, George Em

Abstract

Discovering mathematical models that characterize the observed behavior of dynamical systems remains a major challenge, especially for systems in a chaotic regime, due to their sensitive dependence on initial conditions and the complex non-linear interactions within the system. The challenge is even greater when the physics underlying such systems is not yet understood, and scientific inquiry must solely rely on empirical data. Despite advancements such as the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm, which has shown success in identifying chaotic systems with reasonable accuracy, challenges remain in dealing with noise, sparse data, and the need for models that generalize well across different chaotic systems. Driven by the need to fill this gap, we develop a framework named AI-Lorenz that learns mathematical expressions modeling complex dynamical behaviors by identifying differential equations from noisy and sparse observable data. We train a physics-informed neural network (PINN) with the eXtreme Theory of Functional Connections (X-TFC) algorithm by using data and known physics (when available) to learn the dynamics of a system, its rate of change in time, and missing model terms, which are used as input for a symbolic regression algorithm (PySR) to autonomously distill the explicit mathematical terms. This, in turn, enables us to predict the future evolution of the dynamical behavior. The performance of this framework is validated by recovering the right-hand sides and unknown terms of certain complex, chaotic systems, such as the well-known Lorenz system, a six-dimensional hyperchaotic system, the non-autonomous Sprott chaotic system, and the slow-fast Duffing system, and comparing them with their known analytical expressions and state-of-the-art regression and system identification methods.

Suggested Citation

  • De Florio, Mario & Kevrekidis, Ioannis G. & Karniadakis, George Em, 2024. "AI-Lorenz: A physics-data-driven framework for Black-Box and Gray-Box identification of chaotic systems with symbolic regression," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010907
    DOI: 10.1016/j.chaos.2024.115538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.