IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v388y2021ics0096300320305105.html
   My bibliography  Save this article

Event-triggered impulsive chaotic synchronization of fractional-order differential systems

Author

Listed:
  • Yu, Nanxiang
  • Zhu, Wei

Abstract

The synchronization of fractional-order differential chaotic systems is investigated via event-triggered impulsive control(EIC), where the benefits of impulsive control and event-triggered control are adopted. The impulsive sequence is defined by certain triggering function and triggering condition, which are dependent on the states of master and slave systems. The controller is only updated at impulsive instants. As the update frequency of the controller is reduced, the consumption of communication bandwidth and computing resources by the controller can be further reduced. Furthermore, Zeno-behavior of impulsive sequence is excluded. Finally, the validity of the theoretical results is shown by a numerical example with simulation.

Suggested Citation

  • Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:apmaco:v:388:y:2021:i:c:s0096300320305105
    DOI: 10.1016/j.amc.2020.125554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qiaoping & Liu, Sanyang & Chen, Yonggang, 2018. "Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 521-535.
    2. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    3. Xiuli Chai & Zhihua Gan & Chunxiao Shi, 2013. "Impulsive Synchronization and Adaptive-Impulsive Synchronization of a Novel Financial Hyperchaotic System," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, August.
    4. Tiedong Ma & Teng Li & Bing Cui, 2018. "Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 1-14, January.
    5. Liu, Bin & Sun, Zhijie & Luo, Yihao & Zhong, Yuxuan, 2019. "Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    6. Li, Xian-Feng & Chu, Yan-Dong & Leung, Andrew Y.T. & Zhang, Hui, 2017. "Synchronization of uncertain chaotic systems via complete-adaptive-impulsive controls," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 24-30.
    7. Li, Hui & Kao, YongGui, 2019. "Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 22-31.
    8. Apostolos Argyris & Dimitris Syvridis & Laurent Larger & Valerio Annovazzi-Lodi & Pere Colet & Ingo Fischer & Jordi García-Ojalvo & Claudio R. Mirasso & Luis Pesquera & K. Alan Shore, 2005. "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, Nature, vol. 438(7066), pages 343-346, November.
    9. Messadi, M. & Mellit, A., 2017. "Control of chaos in an induction motor system with LMI predictive control and experimental circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 51-58.
    10. Fei Wang & Yongqing Yang, 2017. "Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 571-577, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Lingao & Li, Lulu & Huang, Wei, 2024. "Asymptotic stability of fractional-order Hopfield neural networks with event-triggered delayed impulses and switching effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 491-504.
    2. Feng, Likang & Zhang, Weihai & Wu, Zhaojing, 2023. "Noise-to-state stability of random impulsive delay systems with multiple random impulses," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    3. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    4. Tan, Hailian & Wu, Jianwei & Bao, Haibo, 2022. "Event-triggered impulsive synchronization of fractional-order coupled neural networks," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    5. Zhang, Xiulan & Lin, Ming & Chen, Fangqi, 2023. "Composite iterative learning adaptive fuzzy control of fractional-order chaotic systems using robust differentiators," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Mo, Wenjun & Bao, Haibo, 2024. "Mean-square bounded synchronization of fractional-order chaotic Lur’e systems under deception attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Bai & Yongguang Yu, 2018. "Neural Networks Based Adaptive Consensus for a Class of Fractional-Order Uncertain Nonlinear Multiagent Systems," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    2. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    3. Weiqiu Pan & Tianzeng Li & Muhammad Sajid & Safdar Ali & Lingping Pu, 2022. "Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances," Mathematics, MDPI, vol. 10(5), pages 1-26, February.
    4. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    5. Xia, Mingli & Liu, Linna & Fang, Jianyin & Qu, Boyang, 2024. "Exponentially weighted input-to-state stability of stochastic differential systems via event-triggered impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Belmar-Monterrubio, Ramiro & Quiroz-Ibarra, J. Emilio & Cervantes-Sodi, Felipe, 2023. "A versatile mathematical function for generating stable and chaotic systems: A data encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Wang, Yan & Cheng, Wei & Feng, Junbo & Zang, Shengyin & Cheng, Hao & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Liu, Hao & Pu, Xun & Yang, Junbo & Wu, Jiagui, 2022. "Silicon photonic secure communication using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Hou, Mimi & Xi, Xuan-Xuan & Zhou, Xian-Feng, 2021. "Boundary control of a fractional reaction-diffusion equation coupled with fractional ordinary differential equations with delay," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    9. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    10. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Ze-Xian Zhang & Min Luo & Jia-Hao Liu & Yi-Tao Yang & Ti-Jian Li & Meng Liu & Ai-Ping Luo & Wen-Cheng Xu & Zhi-Chao Luo, 2024. "Coherence-controlled chaotic soliton bunch," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    13. Aiguo Wu & Shijian Cang & Ruiye Zhang & Zenghui Wang & Zengqiang Chen, 2018. "Hyperchaos in a Conservative System with Nonhyperbolic Fixed Points," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    14. Ren, Jing & Zhai, Chengbo, 2020. "Stability analysis for generalized fractional differential systems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Zhang, Huamin, 2018. "The eigenvalues range of a class of matrices and some applications in Cauchy–Schwarz inequality and iterative methods," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 37-48.
    17. Carroll, Thomas L., 2017. "Communication with unstable basis functions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 766-771.
    18. Li, Mingyue & Wang, Mingzhu & Liu, Wenlu & Wu, Shuchen & Li, Xiaodi, 2023. "Exponential stability of nonlinear systems via event-triggered impulsive control based on partial states," Applied Mathematics and Computation, Elsevier, vol. 459(C).
    19. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    20. Gao, Shigen & Wang, Yubing & Dong, Hairong & Ning, Bin & Wang, Hongwei, 2017. "Controlling uncertain Genesio–Tesi chaotic system using adaptive dynamic surface and nonlinear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 180-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:388:y:2021:i:c:s0096300320305105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.