IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924001735.html
   My bibliography  Save this article

Pattern formation of a spatial vegetation system with cross-diffusion and nonlocal delay

Author

Listed:
  • Guo, Gaihui
  • Qin, Qijing
  • Cao, Hui
  • Jia, Yunfeng
  • Pang, Danfeng

Abstract

Vegetation patterns can reflect vegetation’s spatial distribution in space and time. The saturated water absorption effect between the soil–water and vegetation plays a crucial role in the vegetation patterns in semi-arid regions. Moreover, vegetation can absorb water through the nonlocal interaction of roots. In this paper, we consider how cross-diffusion and nonlocal delay interactions affect vegetation growth. The conditions under which the vegetation-water model generates the Turing pattern are obtained by mathematical analysis. At the same time, the multiple scales method is applied to obtain the amplitude equations at the critical value of Turing bifurcation, which helps us to derive parameter space more specifically where specific patterns such as strips, hexagons, and the mixture of strip and hexagons will emerge. Various spatial distributions of vegetation in semi-arid areas are qualitatively depicted by numerical simulations. The results show that the nonlocal delay effect enhances vegetation biomass. Therefore, we can take measures to increase the intensity of the nonlocal delay effect to increase vegetation density, which theoretically provides new guidance for vegetation protection and desertification control.

Suggested Citation

  • Guo, Gaihui & Qin, Qijing & Cao, Hui & Jia, Yunfeng & Pang, Danfeng, 2024. "Pattern formation of a spatial vegetation system with cross-diffusion and nonlocal delay," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001735
    DOI: 10.1016/j.chaos.2024.114622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinez-Garcia, Ricardo & Cabal, Ciro & Calabrese, Justin M. & Hernández-García, Emilio & Tarnita, Corina E. & López, Cristóbal & Bonachela, Juan A., 2023. "Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Zhi Chen & Guirui Yu & Jianping Ge & Qiufeng Wang & Xianjin Zhu & Zhiwei Xu, 2015. "Roles of Climate, Vegetation and Soil in Regulating the Spatial Variations in Ecosystem Carbon Dioxide Fluxes in the Northern Hemisphere," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    3. Xue, Qiang & Liu, Chen & Li, Li & Sun, Gui-Quan & Wang, Zhen, 2021. "Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    4. Peng, Yahong & Zhang, Tonghua, 2016. "Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 1-12.
    5. Liu, Chen & Wang, Fang-Guang & Xue, Qiang & Li, Li & Wang, Zhen, 2022. "Pattern formation of a spatial vegetation system with root hydrotropism," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    6. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    7. Liang, Juan & Liu, Chen & Sun, Gui-Quan & Li, Li & Zhang, Lai & Hou, Meiting & Wang, Hao & Wang, Zhen, 2022. "Nonlocal interactions between vegetation induce spatial patterning," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chen & Wang, Fang-Guang & Xue, Qiang & Li, Li & Wang, Zhen, 2022. "Pattern formation of a spatial vegetation system with root hydrotropism," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    2. Zhang, Hong-Tao & Wu, Yong-Ping & Sun, Gui-Quan & Liu, Chen & Feng, Guo-Lin, 2022. "Bifurcation analysis of a spatial vegetation model," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    3. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.
    4. Tang, Xiaosong & Zhang, Xiaoyu & Liu, Yiting & Li, Wankun & Zhong, Qi, 2023. "Global stability and Turing instability deduced by cross-diffusion in a delayed diffusive cooperative species model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Shi, Yu & Luo, Xiao-Feng & Zhang, Yong-Xin & Sun, Gui-Quan, 2023. "An indicator of Crohn’s disease severity based on Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    6. Hua Liu & Yong Ye & Yumei Wei & Weiyuan Ma & Ming Ma & Kai Zhang, 2019. "Pattern Formation in a Reaction-Diffusion Predator-Prey Model with Weak Allee Effect and Delay," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    7. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    8. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    9. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    10. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Mandal, Sayan & Sk, Nazmul & Tiwari, Pankaj Kumar & Chattopadhyay, Joydev, 2024. "Bistability in modified Holling II response model with harvesting and Allee effect: Exploring transitions in a noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    12. Chen, Zheng & Liu, Jieyu & Li, Li & Wu, Yongping & Feng, Guolin & Qian, Zhonghua & Sun, Gui-Quan, 2022. "Effects of climate change on vegetation patterns in Hulun Buir Grassland," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    13. Jiaming Guo & Xiaofeng Luo & Juan Zhang & Mingtao Li, 2022. "A Mathematical Model for Ovine Brucellosis during Dynamic Transportation of Sheep, and Its Applications in Jalaid Banner and Ulanhot City," Mathematics, MDPI, vol. 10(19), pages 1-26, September.
    14. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    15. Wang, Henan & Liu, Ping, 2023. "Pattern dynamics of a predator–prey system with cross-diffusion, Allee effect and generalized Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    16. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    17. Liu, Yanwei & Zhang, Tonghua & Liu, Xia, 2020. "Investigating the interactions between Allee effect and harvesting behaviour of a single species model: An evolutionary dynamics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    18. Wenxu Ning & Zhijun Liu & Lianwen Wang & Ronghua Tan, 2021. "Analysis of a Stochastic Competitive Model with Saturation Effect and Distributed Delay," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1435-1459, December.
    19. Tlidi, M. & Messaoudi, M. & Makhoute, A. & Pinto-Ramos, D. & Clerc, M.G., 2024. "Non-linear and non-local plant–plant interactions in arid climate: Allometry, criticality and desertification," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    20. Zhang, Feifan & Sun, Jiamin & Tian, Wang, 2022. "Spatiotemporal pattern selection in a nontoxic-phytoplankton - toxic-phytoplankton - zooplankton model with toxin avoidance effects," Applied Mathematics and Computation, Elsevier, vol. 423(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.