IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v116y2018icp79-85.html
   My bibliography  Save this article

Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium

Author

Listed:
  • Saqib, Muhammad
  • Khan, Ilyas
  • Shafie, Sharidan

Abstract

The objective of this article is to apply the Atangana–Baleanu derivative fractional in Caputo sense to convective flow of Carboxy–Methyl–Cellulose (CMC) based Carbon nanotubes (CNT's) nanofluid in a vertical microchannel. The magnetohydrodynamic (MHD) flow through a porous medium together with heat transfer is considered. The Atangana–Baleanu fractional derivative without singular and the non-local kernel is used in the mathematical formulation to get the time fractional governing equations subject to physical initial and boundary conditions. The Laplace transform technique is used to obtain the exact analytical solutions for velocity and temperature distributions. Finally, the influence of parameters of interest is studied through plots and discussed physically.

Suggested Citation

  • Saqib, Muhammad & Khan, Ilyas & Shafie, Sharidan, 2018. "Application of Atangana–Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 79-85.
  • Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:79-85
    DOI: 10.1016/j.chaos.2018.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918305204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "A new derivative with normal distribution kernel: Theory, methods and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 1-14.
    2. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    3. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 285-294.
    4. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shit, G.C. & Maiti, S. & Roy, M. & Misra, J.C., 2019. "Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 432-450.
    2. Mehmet Yavuz & Ndolane Sene & Mustafa Yıldız, 2022. "Analysis of the Influences of Parameters in the Fractional Second-Grade Fluid Dynamics," Mathematics, MDPI, vol. 10(7), pages 1-17, April.
    3. Firas A. Alwawi & Hamzeh T. Alkasasbeh & Ahmed M. Rashad & Ruwaidiah Idris, 2020. "A Numerical Approach for the Heat Transfer Flow of Carboxymethyl Cellulose-Water Based Casson Nanofluid from a Solid Sphere Generated by Mixed Convection under the Influence of Lorentz Force," Mathematics, MDPI, vol. 8(7), pages 1-21, July.
    4. Dongmin Yu & Rijun Wang, 2022. "An Optimal Investigation of Convective Fluid Flow Suspended by Carbon Nanotubes and Thermal Radiation Impact," Mathematics, MDPI, vol. 10(9), pages 1-15, May.
    5. Panda, Sumati Kumari & Abdeljawad, Thabet & Ravichandran, C., 2020. "A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    2. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    4. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    5. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    8. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    10. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    11. Kumar, Sachin & Pandey, Prashant, 2020. "A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s–Huxley and reaction-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    15. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    16. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    17. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    19. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    20. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:79-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.