IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923012043.html
   My bibliography  Save this article

Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model

Author

Listed:
  • Avcı, İbrahim
  • Lort, Hüseyin
  • Tatlıcıoğlu, Buğce E.

Abstract

This paper investigates the dynamics of Hopfield neural networks involving fractal–fractional derivatives. The incorporation of fractal–fractional derivatives in the neural network framework brings forth novel modeling capabilities, capturing nonlocal dependencies, complex scaling behaviors, and memory effects. The aim of this study is to provide a comprehensive analysis of the dynamics of Hopfield neural networks with fractal–fractional derivatives, including the existence and uniqueness of solutions, stability properties, and numerical analysis techniques. Numerical analysis techniques, including the Adams–Bashforth method, are employed to accurately simulate the fractal–fractional Hopfield neural network system. Moreover, the obtained numerical data serves as validation for developing predictions using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) neural network methods. The findings contribute to the advancement of both fractional calculus and neural network theory, providing valuable insights for theoretical investigations and practical applications in complex systems analysis.

Suggested Citation

  • Avcı, İbrahim & Lort, Hüseyin & Tatlıcıoğlu, Buğce E., 2023. "Numerical investigation and deep learning approach for fractal–fractional order dynamics of Hopfield neural network model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923012043
    DOI: 10.1016/j.chaos.2023.114302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Xu, Shaochuan & Wang, Xingyuan & Ye, Xiaolin, 2022. "A new fractional-order chaos system of Hopfield neural network and its application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    4. Avcı, İbrahim & Hussain, Azhar & Kanwal, Tanzeela, 2023. "Investigating the impact of memory effects on computer virus population dynamics: A fractal–fractional approach with numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    6. Mohd Shareduwan Mohd Kasihmuddin & Mohd. Asyraf Mansor & Md Faisal Md Basir & Saratha Sathasivam, 2019. "Discrete Mutation Hopfield Neural Network in Propositional Satisfiability," Mathematics, MDPI, vol. 7(11), pages 1-21, November.
    7. Shahram Rezapour & Pushpendra Kumar & Vedat Suat Erturk & Sina Etemad & Xiao Ling Wang, 2022. "A Study on the 3D Hopfield Neural Network Model via Nonlocal Atangana–Baleanu Operators," Complexity, Hindawi, vol. 2022, pages 1-13, July.
    8. S.G. Hu & Y. Liu & Z Liu & T.P. Chen & J.J. Wang & Q. Yu & L.J. Deng & Y. Yin & Sumio Hosaka, 2015. "Associative memory realized by a reconfigurable memristive Hopfield neural network," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    9. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    10. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanwal, Tanzeela & Hussain, Azhar & Avcı, İbrahim & Etemad, Sina & Rezapour, Shahram & Torres, Delfim F.M., 2024. "Dynamics of a model of polluted lakes via fractal–fractional operators with two different numerical algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    3. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    5. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    6. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Admon, Mohd Rashid & Senu, Norazak & Ahmadian, Ali & Majid, Zanariah Abdul & Salahshour, Soheil, 2024. "A new modern scheme for solving fractal–fractional differential equations based on deep feedforward neural network with multiple hidden layer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 311-333.
    8. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    10. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Othman Abdullah Almatroud & Viet-Thanh Pham & Giuseppe Grassi & Mohammad Alshammari & Sahar Albosaily & Van Van Huynh, 2023. "Design of High-Dimensional Maps with Sine Terms," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
    12. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    13. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    14. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Tao Li & Jianqiang Luo & Kaitong Liang & Chaonan Yi & Lei Ma, 2023. "Synergy of Patent and Open-Source-Driven Sustainable Climate Governance under Green AI: A Case Study of TinyML," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    16. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    18. Goufo, Emile F. Doungmo, 2021. "On the fractal dynamics for higher order traveling waves," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    20. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923012043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.