Quasi-Zero Stiffness-Based Synchronous Vibration Isolation and Energy Harvesting: A Comprehensive Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
- Joanna Iwaniec & Grzegorz Litak & Marek Iwaniec & Jerzy Margielewicz & Damian Gąska & Mykhaylo Melnyk & Wojciech Zabierowski, 2021. "Response Identification in a Vibration Energy-Harvesting System with Quasi-Zero Stiffness and Two Potential Wells," Energies, MDPI, vol. 14(13), pages 1-14, June.
- Liu, Chaoran & Zhao, Rui & Yu, Kaiping & Lee, Heow Pueh & Liao, Baopeng, 2021. "A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams," Energy, Elsevier, vol. 233(C).
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sui, Guangdong & Shan, Xiaobiao & Chen, Yifeng & Zhou, Chunyu & Hou, Chengwei & Li, Hengyu & Cheng, Tinghai, 2024. "Dual-function of energy harvesting and vibration isolation via quasi-zero stiffness piezoelectric mechanism," Energy, Elsevier, vol. 301(C).
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Haniszewski, Tomasz & Wolszczak, Piotr & Trigona, Carlo, 2023. "Influence of the potential barrier switching frequency on the effectiveness of energy harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
- Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
- Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
- Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
- Du, Wenfeng & Liang, Lutong & Zhou, Zhiyong & Qin, Weiyang & Huang, Haobo & Cao, Di, 2024. "Enhancing piezoelectric energy harvesting from the flow-induced vibration of an apple-shaped bluff body based on topology optimization," Energy, Elsevier, vol. 307(C).
- Zheng, Peng & Qi, Lingfei & Sun, Mengdie & Luo, Dabing & Zhang, Zutao, 2021. "A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels," Energy, Elsevier, vol. 227(C).
- Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
- Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
- Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Kwak, Wonil & Lee, Yongbok, 2021. "Optimal design and experimental verification of piezoelectric energy harvester with fractal structure," Applied Energy, Elsevier, vol. 282(PA).
- Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Yurchenko, Daniil & Wolszczak, Piotr & Dymarek, Andrzej & Dzitkowski, Tomasz, 2023. "Influence of the configuration of elastic and dissipative elements on the energy harvesting efficiency of a tunnel effect energy harvester," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Yossri, W. & Ben Ayed, S. & Abdelkefi, A., 2023. "Evaluation of the efficiency of bioinspired blade designs for low-speed small-scale wind turbines with the presence of inflow turbulence effects," Energy, Elsevier, vol. 273(C).
- Tyler Alvis & Mikhail Mesh & Abdessattar Abdelkefi, 2023. "Insights on the Effects of Magnetic Forces on the Efficiency of Vibration Energy Harvesting Absorbers in Controlling Dynamical Systems," Energies, MDPI, vol. 16(3), pages 1-46, January.
- Zhou, Jianwen & He, Lipeng & Yu, Gang & Liu, Lei & Gu, Xiangfeng & Wang, Yuecheng & Cheng, Guangming, 2022. "Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure," Renewable Energy, Elsevier, vol. 185(C), pages 959-969.
- Yang, Tao & Liu, Jiayi & Luo, Hongchun & Li, Zhixin, 2024. "Improving the performance of nonlinear isolator through triboelectric nanogenerator damper integrating energy harvesting," Energy, Elsevier, vol. 293(C).
More about this item
Keywords
nonlinearity; QZS; vibration isolation; energy harvesting; low-frequency vibrations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7066-:d:925542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.