On the integral transform of fractal interpolation functions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.08.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dai, Zhong & Liu, Shutang, 2023. "Construction and box dimension of the composite fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
- Prithvi, B.V. & Katiyar, S.K., 2022. "Interpolative operators: Fractal to multivalued fractal," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Yun, CholHui & Ri, MiGyong, 2020. "Box-counting dimension and analytic properties of hidden variable fractal interpolation functions with function contractivity factors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
- Y. S. Liang, 2022. "Approximation With Fractal Functions By Fractal Dimension," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-12, November.
- El-Nabulsi, Rami Ahmad & Khalili Golmankhaneh, Alireza & Agarwal, Praveen, 2022. "On a new generalized local fractal derivative operator," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
- Subhash Chandra & Syed Abbas, 2021. "The Calculus Of Bivariate Fractal Interpolation Surfaces," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-13, May.
- Yong-Shun Liang, 2022. "Approximation Of The Same Box Dimension In Continuous Functions Space," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(03), pages 1-9, May.
- T. M. C. Priyanka & A. Gowrisankar, 2023. "Construction Of New Affine And Non-Affine Fractal Interpolation Functions Through The Weyl–Marchaud Derivative," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(05), pages 1-15.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yu, Binyan & Liang, Yongshun, 2024. "On the dimensional connection between a class of real number sequences and local fractal functions with a single unbounded variation point," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
- Verma, Shubham Kumar & Kumar, Satish, 2024. "Fractal dimension analysis of financial performance of resulting companies after mergers and acquisitions," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Khalili Golmankhaneh, Alireza & Bongiorno, Donatella, 2024. "Exact solutions of some fractal differential equations," Applied Mathematics and Computation, Elsevier, vol. 472(C).
- Lal, Rattan & Chandra, Subhash & Prajapati, Ajay, 2024. "Fractal surfaces in Lebesgue spaces with respect to fractal measures and associated fractal operators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Ri, Mi-Gyong & Yun, Chol-Hui, 2020. "Riemann Liouville fractional integral of hidden variable fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Ullah, Kifayat & Katiyar, S.K., 2023. "Generalized G-Hausdorff space and applications in fractals," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Ri, SongIl, 2021. "A remarkable fact for the box dimensions of fractal interpolation curves of R3," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Prithvi, B.V. & Katiyar, S.K., 2023. "Revisiting fractal through nonconventional iterated function systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
- Yao, Kui & Chen, Haotian & Peng, W.L. & Wang, Zekun & Yao, Jia & Wu, Yipeng, 2021. "A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Chandra, Subhash & Abbas, Syed, 2022. "Fractal dimensions of mixed Katugampola fractional integral associated with vector valued functions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Gupta, Deepika & Pandey, Asheesh, 2024. "Analyzing impact of corporate governance index on working capital management through fractal functions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
- Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Verma, S. & Jha, S. & Navascués, M.A., 2023. "Smoothness analysis and approximation aspects of non-stationary bivariate fractal functions," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
More about this item
Keywords
Fractal interpolation functions; Composite fractal interpolation functions; Integral transform; Laplace transform; Laplace carson transform;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:209-224. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.