IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v222y2024icp209-224.html
   My bibliography  Save this article

On the integral transform of fractal interpolation functions

Author

Listed:
  • Agathiyan, A.
  • Gowrisankar, A.
  • Fataf, Nur Aisyah Abdul

Abstract

This paper explores the integral transform of two distinct fractal interpolation functions, namely the linear fractal interpolation function and the hidden variable fractal interpolation function with variable scaling factors. Further, with a particular application of kernel functions, we investigate the integral transform of fractal functions, such as the Laplace transform and the Laplace Carson transform. Moreover, we show that the compositeness of two fractal interpolation functions, f1 in {tɛ,xɛ} and f2 in {xɛ,zɛ} remains a fractal interpolation function. It also generates iterated function system from given iterated function systems. In addition to this, the study is carried out on the composite linear fractal interpolation function of the integral transform, the Laplace transform, and the Laplace Carson transform.

Suggested Citation

  • Agathiyan, A. & Gowrisankar, A. & Fataf, Nur Aisyah Abdul, 2024. "On the integral transform of fractal interpolation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 209-224.
  • Handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:209-224
    DOI: 10.1016/j.matcom.2023.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhong & Liu, Shutang, 2023. "Construction and box dimension of the composite fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Prithvi, B.V. & Katiyar, S.K., 2022. "Interpolative operators: Fractal to multivalued fractal," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Yun, CholHui & Ri, MiGyong, 2020. "Box-counting dimension and analytic properties of hidden variable fractal interpolation functions with function contractivity factors," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Y. S. Liang, 2022. "Approximation With Fractal Functions By Fractal Dimension," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-12, November.
    5. El-Nabulsi, Rami Ahmad & Khalili Golmankhaneh, Alireza & Agarwal, Praveen, 2022. "On a new generalized local fractal derivative operator," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Subhash Chandra & Syed Abbas, 2021. "The Calculus Of Bivariate Fractal Interpolation Surfaces," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-13, May.
    7. Yong-Shun Liang, 2022. "Approximation Of The Same Box Dimension In Continuous Functions Space," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(03), pages 1-9, May.
    8. T. M. C. Priyanka & A. Gowrisankar, 2023. "Construction Of New Affine And Non-Affine Fractal Interpolation Functions Through The Weyl–Marchaud Derivative," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(05), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Binyan & Liang, Yongshun, 2024. "On the dimensional connection between a class of real number sequences and local fractal functions with a single unbounded variation point," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Verma, Shubham Kumar & Kumar, Satish, 2024. "Fractal dimension analysis of financial performance of resulting companies after mergers and acquisitions," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Khalili Golmankhaneh, Alireza & Bongiorno, Donatella, 2024. "Exact solutions of some fractal differential equations," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    4. Lal, Rattan & Chandra, Subhash & Prajapati, Ajay, 2024. "Fractal surfaces in Lebesgue spaces with respect to fractal measures and associated fractal operators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Ri, Mi-Gyong & Yun, Chol-Hui, 2020. "Riemann Liouville fractional integral of hidden variable fractal interpolation function," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Ullah, Kifayat & Katiyar, S.K., 2023. "Generalized G-Hausdorff space and applications in fractals," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Ri, SongIl, 2021. "A remarkable fact for the box dimensions of fractal interpolation curves of R3," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Prithvi, B.V. & Katiyar, S.K., 2023. "Revisiting fractal through nonconventional iterated function systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    9. Yao, Kui & Chen, Haotian & Peng, W.L. & Wang, Zekun & Yao, Jia & Wu, Yipeng, 2021. "A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Chandra, Subhash & Abbas, Syed, 2022. "Fractal dimensions of mixed Katugampola fractional integral associated with vector valued functions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Gupta, Deepika & Pandey, Asheesh, 2024. "Analyzing impact of corporate governance index on working capital management through fractal functions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    13. Verma, S. & Jha, S. & Navascués, M.A., 2023. "Smoothness analysis and approximation aspects of non-stationary bivariate fractal functions," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    14. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:222:y:2024:i:c:p:209-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.