IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v3y2015i3p727-745d54261.html
   My bibliography  Save this article

From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity

Author

Listed:
  • Rami Ahmad El-Nabulsi

    (College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, China)

Abstract

Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.

Suggested Citation

  • Rami Ahmad El-Nabulsi, 2015. "From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity," Mathematics, MDPI, vol. 3(3), pages 1-19, August.
  • Handle: RePEc:gam:jmathe:v:3:y:2015:i:3:p:727-745:d:54261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/3/3/727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/3/3/727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Musielak, Z.E., 2009. "General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2645-2652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdzislaw E. Musielak & Niyousha Davachi & Marialis Rosario-Franco, 2020. "Special Functions of Mathematical Physics: A Unified Lagrangian Formalism," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
    2. Song, Chuan-Jing & Zhang, Yi, 2017. "Conserved quantities for Hamiltonian systems on time scales," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 24-36.
    3. Diana T. Pham & Zdzislaw E. Musielak, 2023. "Non-Standard and Null Lagrangians for Nonlinear Dynamical Systems and Their Role in Population Dynamics," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    4. El-Nabulsi, Rami Ahmad & Khalili Golmankhaneh, Alireza & Agarwal, Praveen, 2022. "On a new generalized local fractal derivative operator," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Velasco-Juan, M. & Fujioka, J., 2022. "Lagrangian nonlocal nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:3:y:2015:i:3:p:727-745:d:54261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.