IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920310055.html
   My bibliography  Save this article

Jacobi-Davidson method for the second order fractional eigenvalue problems

Author

Listed:
  • He, Ying
  • Zuo, Qian

Abstract

We present a Jacobi-Davidson method for solving the second order fractional eigenvalue problems by using the finite difference formulas of the Caputo fractional derivatives. In order to speed up the convergence of the method, we propose the preconditioned generalized minimal residuals method (PGMRES) to solve the correction equation and analyze the spectral clustering property of the preconditioned matrix. Numerical results show that the Jacobi-Davidson method is efficient for solving the fractional eigenvalue problems.

Suggested Citation

  • He, Ying & Zuo, Qian, 2021. "Jacobi-Davidson method for the second order fractional eigenvalue problems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920310055
    DOI: 10.1016/j.chaos.2020.110614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920310055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    2. Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Sandipan & Ranta, Shivani, 2022. "Legendre wavelet based numerical approach for solving a fractional eigenvalue problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.
    2. Aljoudi, Shorog & Ahmad, Bashir & Nieto, Juan J. & Alsaedi, Ahmed, 2016. "A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 39-46.
    3. Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
    4. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Ahmad, Bashir & Ntouyas, Sotiris K. & Alsaedi, Ahmed, 2016. "On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 234-241.
    6. Goel, Eti & Pandey, Rajesh K. & Yadav, S. & Agrawal, Om P., 2023. "A numerical approximation for generalized fractional Sturm–Liouville problem with application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 417-436.
    7. Aghazadeh, A. & Mahmoudi, Y. & Saei, F.D., 2023. "Legendre approximation method for computing eigenvalues of fourth order fractional Sturm–Liouville problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 286-301.
    8. Li, Jing & Qi, Jiangang, 2015. "Eigenvalue problems for fractional differential equations with right and left fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 1-10.
    9. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    10. Gupta, Sandipan & Ranta, Shivani, 2022. "Legendre wavelet based numerical approach for solving a fractional eigenvalue problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920310055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.