IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921005579.html
   My bibliography  Save this article

Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits

Author

Listed:
  • Zhu, Zhigang
  • Ren, Guodong
  • Zhang, Xiaofeng
  • Ma, Jun

Abstract

Functional neural circuits had been proposed by taking physical effects into considerations. Both the synapse coupling and the capability of sensing physical signals from the environment are critical elements among others for realizing functional neural circuits. When these two elements are involved in the dynamics of neural circuits, synchronization between circuits due to coupling or noise from the electronic sensory devices can occur. Therefore, in this paper, the effect of coupling and noise on the synchronization between two augmented thermosensitive FitzHugh–Nagumo neural circuits is investigated. It is shown that the fluctuation of temperature perceived by negative temperature coefficient thermistors yields a multiplicative noise exerting on the dynamics of the neural circuits. Contrary to what was expected, numerical results confirmed that the coupling suppresses synchronization while multiplicative noise facilitates synchronization. The mechanism underlying these phenomena is demonstrated by the phase portrait that peculiar to synchronizations and the first-return map to the Poincaré section. The intermittency behavior during the route to synchronization under different intensity of noise is also characterized, which would have significant value to the function neural circuit for self-adaption.

Suggested Citation

  • Zhu, Zhigang & Ren, Guodong & Zhang, Xiaofeng & Ma, Jun, 2021. "Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005579
    DOI: 10.1016/j.chaos.2021.111203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Conte, Elio & Pierri, GianPaolo & Federici, Antonio & Mendolicchio, Leonardo & Zbilut, Joseph P., 2006. "A model of biological neuron with terminal chaos and quantum-like features," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 774-780.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Miaomiao & Song, Xinlin & Wang, Hengtong & Yang, Zhuoqin & Chen, Yong, 2022. "Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    3. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    4. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Rodrigue Tchamda & Sifeu Takougang Kingni & Karthikeyan Rajagopal & Victor Kamgang Kuetche, 2021. "Dynamical analysis of Josephson junction neuron model driven by a thermal signal and its digital implementation based on microcontroller," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-7, December.
    9. Huang, Guodong & Zhou, Shu & Zhu, Rui & Wang, Yunhai & Chai, Yuan, 2024. "Stability and complexity evaluation of attractors in a controllable piezoelectric Fitzhugh-Nagumo circuit," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    12. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    14. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
    15. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    17. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    18. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Tah, Forwah Amstrong & Tabi, Conrad Bertrand & Kofane, Timoléon Crépin, 2021. "Pattern formation in the Fitzhugh–Nagumo neuron with diffusion relaxation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    20. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.