IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v94y2021i12d10.1140_epjb_s10051-021-00256-y.html
   My bibliography  Save this article

Dynamical analysis of Josephson junction neuron model driven by a thermal signal and its digital implementation based on microcontroller

Author

Listed:
  • Noel Freddy Fotie Foka

    (University of Yaoundé I)

  • Balamurali Ramakrishnan

    (Chennai Institute of Technology)

  • André Rodrigue Tchamda

    (University of Dschang)

  • Sifeu Takougang Kingni

    (University of Maroua)

  • Karthikeyan Rajagopal

    (Chennai Institute of Technology)

  • Victor Kamgang Kuetche

    (University of Yaoundé I)

Abstract

The dynamical features and the digital implementation of a microcontroller Josephson junction neuron model driven by a thermal signal is investigated in this paper. By designing the system above as a thermistor in series to some variant voltage source connected in parallel to a resistor and a capacitor, we show that the hysteresis loop appearances are strongly temperature and applied voltage source dependent. We further determine the equilibrium points of the model system while studying their stability. Following the numerical analysis, we find out the existence of period-1-oscillations, continuous spiking oscillations, periodic bursting oscillations, and chaotic oscillations in the neural activities as functions of the temperature and modulation parameters of the sinusoidal voltage source. As an illustration, we implement some digital system measurements in view of discussing deeply the previous findings while providing their physical implications. Graphical abstract

Suggested Citation

  • Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Rodrigue Tchamda & Sifeu Takougang Kingni & Karthikeyan Rajagopal & Victor Kamgang Kuetche, 2021. "Dynamical analysis of Josephson junction neuron model driven by a thermal signal and its digital implementation based on microcontroller," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(12), pages 1-7, December.
  • Handle: RePEc:spr:eurphb:v:94:y:2021:i:12:d:10.1140_epjb_s10051-021-00256-y
    DOI: 10.1140/epjb/s10051-021-00256-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-021-00256-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-021-00256-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Xu, Quan & Tan, Xiao & Zhu, Dong & Bao, Han & Hu, Yihua & Bao, Bocheng, 2020. "Bifurcations to bursting and spiking in the Chay neuron and their validation in a digital circuit," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthikeyan Rajagopal & Suresh Kumarasamy & Sathiyadevi Kanagaraj & Anitha Karthikeyan, 2022. "Infinitely coexisting chaotic and nonchaotic attractors in a RLC shunted Josephson Junction with an AC bias current," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-9, September.
    2. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noel Freddy Fotie Foka & Balamurali Ramakrishnan & André Cheage Chamgoué & Alain Francis Talla & Victor Kamgang Kuetche, 2022. "Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-8, June.
    2. Chen, Xiongjian & Wang, Ning & Wang, Yiteng & Wu, Huagan & Xu, Quan, 2023. "Memristor initial-offset boosting and its bifurcation mechanism in a memristive FitzHugh-Nagumo neuron model with hidden dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    4. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Hu, Dongpo & Ma, Linyi & Song, Zigen & Zheng, Zhaowen & Cheng, Lifang & Liu, Ming, 2024. "Multiple bifurcations of a time-delayed coupled FitzHugh–Rinzel neuron system with chemical and electrical couplings," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    9. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    10. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Li, Fangyuan & Chen, Zhuguan & Bao, Han & Bai, Lianfa & Bao, Bocheng, 2024. "Chaos and bursting patterns in two-neuron Hopfield neural network and analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    13. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    14. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Tah, Forwah Amstrong & Tabi, Conrad Bertrand & Kofane, Timoléon Crépin, 2021. "Pattern formation in the Fitzhugh–Nagumo neuron with diffusion relaxation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    16. Wang, Ning & Cui, Mengkai & Yu, Xihong & Shan, Yufan & Xu, Quan, 2023. "Generating multi-folded hidden Chua’s attractors: Two-case study," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    17. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    19. Njitacke, Zeric Tabekoueng & Ramakrishnan, Balamurali & Rajagopal, Karthikeyan & Fonzin Fozin, Théophile & Awrejcewicz, Jan, 2022. "Extremely rich dynamics of coupled heterogeneous neurons through a Josephson junction synapse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Hussain, Iqtadar & Ghosh, Dibakar & Jafari, Sajad, 2021. "Chimera states in a thermosensitive FitzHugh-Nagumo neuronal network," Applied Mathematics and Computation, Elsevier, vol. 410(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:94:y:2021:i:12:d:10.1140_epjb_s10051-021-00256-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.