IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v68y2014icp169-179.html
   My bibliography  Save this article

Stability and bifurcation analysis of a mathematical model for tumor–immune interaction with piecewise constant arguments of delay

Author

Listed:
  • Gurcan, Fuat
  • Kartal, Senol
  • Ozturk, Ilhan
  • Bozkurt, Fatma

Abstract

In this paper, we propose and analyze a Lotka–Volterra competition like model which consists of system of differential equations with piecewise constant arguments of delay to study of interaction between tumor cells and Cytotoxic T lymphocytes (CTLs). In order to get local and global behaviors of the system, we use Schur–Cohn criterion and constructed a Lyapunov function. Some algebraic conditions which satisfy local and global stability of the system are obtained. In addition, we investigate the possible bifurcation types for the system and observe that the system may undergo Neimark–Sacker bifurcation. Moreover, it is predicted a threshold value above which there is uncontrollable tumor growth, and below periodic solutions that leading to tumor dormant state occur.

Suggested Citation

  • Gurcan, Fuat & Kartal, Senol & Ozturk, Ilhan & Bozkurt, Fatma, 2014. "Stability and bifurcation analysis of a mathematical model for tumor–immune interaction with piecewise constant arguments of delay," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 169-179.
  • Handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:169-179
    DOI: 10.1016/j.chaos.2014.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Bozkurt, 2013. "Modeling a Tumor Growth with Piecewise Constant Arguments," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-8, May.
    2. Radouane Yafia, 2006. "Stability of limit cycle in a delayed model for tumor immune system competition with negative immune response," Discrete Dynamics in Nature and Society, Hindawi, vol. 2006, pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    2. S. Kartal & M. Kar & N. Kartal & F. Gurcan, 2016. "Modelling and analysis of a phytoplankton–zooplankton system with continuous and discrete time," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 22(6), pages 539-554, November.
    3. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Kaya, Guven & Kartal, Senol & Gurcan, Fuat, 2020. "Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:169-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.