IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp606-623.html
   My bibliography  Save this article

A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis

Author

Listed:
  • Rihan, F.A.
  • Abdel Rahman, D.H.
  • Lakshmanan, S.
  • Alkhajeh, A.S.

Abstract

Recently, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. In this paper, we present a delay differential model to describe the interactions between the effector and tumour cells. The existence of the possible steady states and their local stability and change of stability via Hopf bifurcation are theoretically and numerically investigated. Parameter estimation problem for given real observations, using least squares approach, is studied. The global stability and sensitivity analysis are also numerically proved for the model. The stability and periodicity of the solutions may depend on the time-lag parameter. The model is qualitatively consistent with the experimental observations of immune-induced tumour dormancy. The model also predicts dormancy as a transient period of growth which necessarily results in either tumour elimination or tumour escape.

Suggested Citation

  • Rihan, F.A. & Abdel Rahman, D.H. & Lakshmanan, S. & Alkhajeh, A.S., 2014. "A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 606-623.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:606-623
    DOI: 10.1016/j.amc.2014.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314001568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2007. "Further results on passivity analysis of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1546-1551.
    2. F. A. Rihan & M. Safan & M. A. Abdeen & D. Abdel Rahman, 2012. "Qualitative and Computational Analysis of a Mathematical Model for Tumor-Immune Interactions," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    2. Ruiqing Shi & Ting Lu & Cuihong Wang, 2019. "Dynamic Analysis of a Fractional-Order Model for Hepatitis B Virus with Holling II Functional Response," Complexity, Hindawi, vol. 2019, pages 1-13, August.
    3. Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Ghanizadeh, Mojtaba & Shariatpanahi, Seyed Peyman & Goliaei, Bahram & Rüegg, Curzio, 2021. "Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Zhou, Haihua & Song, Huijuan & Wang, Zejia, 2022. "The effect of time delay in regulatory apoptosis on a tumor model with angiogenesis," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Dong, Yueping & Huang, Gang & Miyazaki, Rinko & Takeuchi, Yasuhiro, 2015. "Dynamics in a tumor immune system with time delays," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 99-113.
    7. Abraham J. Arenas & Gilberto González-Parra & Jhon J. Naranjo & Myladis Cogollo & Nicolás De La Espriella, 2021. "Mathematical Analysis and Numerical Solution of a Model of HIV with a Discrete Time Delay," Mathematics, MDPI, vol. 9(3), pages 1-21, January.
    8. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Xu, Changjin & Farman, Muhammad & Akgül, Ali & Nisar, Kottakkaran Sooppy & Ahmad, Aqeel, 2022. "Modeling and analysis fractal order cancer model with effects of chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. George E. Chatzarakis & Tongxing Li, 2018. "Oscillation Criteria for Delay and Advanced Differential Equations with Nonmonotone Arguments," Complexity, Hindawi, vol. 2018, pages 1-18, April.
    11. Rihan, F.A. & Lakshmanan, S. & Maurer, H., 2019. "Optimal control of tumour-immune model with time-delay and immuno-chemotherapy," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 147-165.
    12. Jia, Yunfeng, 2020. "Bifurcation and pattern formation of a tumor–immune model with time-delay and diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 92-108.
    13. Fathalla A. Rihan & Chinnathambi Rajivganthi, 2021. "Dynamics of Tumor-Immune System with Random Noise," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    14. F. A. Rihan & C. Tunc & S. H. Saker & S. Lakshmanan & R. Rakkiyappan, 2018. "Applications of Delay Differential Equations in Biological Systems," Complexity, Hindawi, vol. 2018, pages 1-3, September.
    15. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 293-310.
    16. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Dehingia, Kaushik & Das, Parthasakha & Upadhyay, Ranjit Kumar & Misra, Arvind Kumar & Rihan, Fathalla A. & Hosseini, Kamyar, 2023. "Modelling and analysis of delayed tumour–immune system with hunting T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 669-684.
    18. Shyam Sundar Santra & Rami Ahmad El-Nabulsi & Khaled Mohamed Khedher, 2021. "Oscillation of Second-Order Differential Equations with Multiple and Mixed Delays under a Canonical Operator," Mathematics, MDPI, vol. 9(12), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Balasubramaniam & G. Nagamani, 2011. "Global Robust Passivity Analysis for Stochastic Interval Neural Networks with Interval Time-Varying Delays and Markovian Jumping Parameters," Journal of Optimization Theory and Applications, Springer, vol. 149(1), pages 197-215, April.
    2. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    3. Dehingia, Kaushik & Das, Parthasakha & Upadhyay, Ranjit Kumar & Misra, Arvind Kumar & Rihan, Fathalla A. & Hosseini, Kamyar, 2023. "Modelling and analysis of delayed tumour–immune system with hunting T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 669-684.
    4. Ye, Zhiyong & Ji, Huihui & Zhang, He, 2016. "Passivity analysis of Markovian switching complex dynamic networks with multiple time-varying delays and stochastic perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 147-157.
    5. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:606-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.