IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v114y2018icp230-245.html
   My bibliography  Save this article

Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors

Author

Listed:
  • Lai, Qiang
  • Norouzi, Benyamin
  • Liu, Feng

Abstract

This paper introduces an extended Lü system with coexisting attractors. The number and stability of equilibria are determined. The coexisting attractors of the system are displayed by the bifurcation diagrams, Lyapunov exponent spectrum, phase portraits. It is shown that the system has a pair of strange attractors, a pair of limit cycles, a pair of point attractors for different initial conditions. The circuit implementation of the chaotic attractor and coexisting attractors of the system are presented. The control problem of the system is studied as well. A controller is designed to stabilize the system to the origin and realize the switching between two chaotic attractors based on the passive control method. Moreover, a chaotic image encryption algorithm is proposed according to the system. The performance of the algorithm is numerically analyzed.

Suggested Citation

  • Lai, Qiang & Norouzi, Benyamin & Liu, Feng, 2018. "Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 230-245.
  • Handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:230-245
    DOI: 10.1016/j.chaos.2018.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918306052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Aimin & Lu, Junan & Lü, Jinhu & Yu, Simin, 2006. "Generating hyperchaotic Lü attractor via state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 103-110.
    2. Gao, Tiegang & Chen, Zengqiang & Gu, Qiaolun & Yuan, Zhuzhi, 2008. "A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 390-397.
    3. Lai, Qiang & Nestor, Tsafack & Kengne, Jacques & Zhao, Xiao-Wen, 2018. "Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 92-102.
    4. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Kapitaniak, Tomasz, 2016. "A gallery of chaotic systems with an infinite number of equilibrium points," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 58-63.
    5. Gao, Tiegang & Chen, Zengqiang, 2008. "Image encryption based on a new total shuffling algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 213-220.
    6. Wang, Guangyi & Zhang, Xun & Zheng, Yan & Li, Yuxia, 2006. "A new modified hyperchaotic Lü system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 260-272.
    7. Ertugrul M. Ozbudak & Mukund Thattai & Han N. Lim & Boris I. Shraiman & Alexander van Oudenaarden, 2004. "Multistability in the lactose utilization network of Escherichia coli," Nature, Nature, vol. 427(6976), pages 737-740, February.
    8. Nikolov, Svetoslav & Clodong, Sébastien, 2006. "Hyperchaos–chaos–hyperchaos transition in modified Rössler systems," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 252-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huagan Wu & Han Bao & Quan Xu & Mo Chen, 2019. "Abundant Coexisting Multiple Attractors’ Behaviors in Three-Dimensional Sine Chaotic System," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    2. Ramamoorthy, Ramesh & Rajagopal, Karthikeyan & Leutcho, Gervais Dolvis & Krejcar, Ondrej & Namazi, Hamidreza & Hussain, Iqtadar, 2022. "Multistable dynamics and control of a new 4D memristive chaotic Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Zhang, Sen & Zheng, Jiahao & Wang, Xiaoping & Zeng, Zhigang, 2021. "A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Wang, Xingyuan & Liu, Huipeng, 2022. "Cross-plane multi-image encryption using chaos and blurred pixels," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Bao, B. & Peol, M.A. & Bao, H. & Chen, M. & Li, H. & Chen, B., 2021. "No-argument memristive hyper-jerk system and its coexisting chaotic bubbles boosted by initial conditions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. García-Guerrero, E.E. & Inzunza-González, E. & López-Bonilla, O.R. & Cárdenas-Valdez, J.R. & Tlelo-Cuautle, E., 2020. "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    8. Kamdjeu Kengne, Léandre & Mboupda Pone, Justin Roger & Fotsin, Hilaire Bertrand, 2021. "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Trujillo-Toledo, D.A. & López-Bonilla, O.R. & García-Guerrero, E.E. & Tlelo-Cuautle, E. & López-Mancilla, D. & Guillén-Fernández, O. & Inzunza-González, E., 2021. "Real-time RGB image encryption for IoT applications using enhanced sequences from chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Mo Chen & Yang Feng & Han Bao & Bocheng Bao & Huagan Wu & Quan Xu, 2019. "Hybrid State Variable Incremental Integral for Reconstructing Extreme Multistability in Memristive Jerk System with Cubic Nonlinearity," Complexity, Hindawi, vol. 2019, pages 1-16, June.
    11. Dong, Chengwei & Yang, Min & Jia, Lian & Li, Zirun, 2024. "Dynamics investigation and chaos-based application of a novel no-equilibrium system with coexisting hidden attractors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    12. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Lai, Qiang & Yang, Liang & Liu, Yuan, 2022. "Design and realization of discrete memristive hyperchaotic map with application in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Guang-Hui Xu & Meng Xu & Ming-Feng Ge & Teng-Fei Ding & Feng Qi & Meng Li, 2020. "Distributed Event-Based Control of Hierarchical Leader-Follower Networks with Time-Varying Layer-To-Layer Delays," Energies, MDPI, vol. 13(7), pages 1-14, April.
    15. Chen, Mo & Wang, Chao & Bao, Han & Ren, Xue & Bao, Bocheng & Xu, Quan, 2020. "Reconstitution for interpreting hidden dynamics with stable equilibrium point," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Bao, Han & Ding, Ruoyu & Chen, Bei & Xu, Quan & Bao, Bocheng, 2023. "Two-dimensional non-autonomous neuron model with parameter-controlled multi-scroll chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaobing & Wu, Yue & Li, Yi & Xue, Hongquan, 2009. "Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2477-2483.
    2. Wu, Wenjuan & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2340-2356.
    3. Yu, Yongguang & Li, Han-Xiong, 2009. "Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2330-2337.
    4. Zhang, Xin & Li, Chunbiao & Chen, Yudi & IU, Herbert H.C. & Lei, Tengfei, 2020. "A memristive chaotic oscillator with controllable amplitude and frequency," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Tomas Tokar & Jozef Ulicny, 2013. "The Mathematical Model of the Bcl-2 Family Mediated MOMP Regulation Can Perform a Non-Trivial Pattern Recognition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    6. Paul Miller & Anatol M Zhabotinsky & John E Lisman & Xiao-Jing Wang, 2005. "The Stability of a Stochastic CaMKII Switch: Dependence on the Number of Enzyme Molecules and Protein Turnover," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    7. Lai, Qiang & Xu, Guanghui & Pei, Huiqin, 2019. "Analysis and control of multiple attractors in Sprott B system," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 192-200.
    8. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Gao, Tiegang & Gu, Qiaolun & Emmanuel, Sabu, 2009. "A novel image authentication scheme based on hyper-chaotic cell neural network," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 548-553.
    10. Leutcho, Gervais Dolvis & Kengne, Jacques, 2018. "A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 275-293.
    11. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    12. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    13. Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.
    14. Yassen, M.T., 2008. "Synchronization hyperchaos of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 465-475.
    15. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    16. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    17. Mazloom, Sahar & Eftekhari-Moghadam, Amir Masud, 2009. "Color image encryption based on Coupled Nonlinear Chaotic Map," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1745-1754.
    18. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Banerjee, Santo, 2009. "Synchronization of time-delayed systems with chaotic modulation and cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 745-750.
    20. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:230-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.