IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077921010511.html
   My bibliography  Save this article

A study on eco-epidemiological model with fractional operators

Author

Listed:
  • Kumar, Ajay
  • Kumar, Sunil

Abstract

This paper employs fractional calculus (FC) for modeling three-dimensional prey-predator populations model. This study uses an eco-epidemiological system in which the prey disease is constructed as a susceptible-infected (SI) disease. The Caputo and Caputo-Fabrizio (CF) operators are consolidated into this model and the existence of a solution is explored. The model is evaluated for uniqueness under what conditions it provides a unique solution. Based on the singular kernel of the Caputo operator, we investigate the properties of the proposed model and show it can be stable locally. We developed maximum bifurcation diagrams to analyze the dynamics of the epidemiological model as varying transmission rates β and attack rates b1. To simulate the dynamics of proposed fractional systems, we employed the Toufik-Atangana (TA) numerical technique with the Caputo operator. Moreover, we present another numerical approach based on Adams-Bashforth (AB) technique with CF operators. Results of the numerical analysis show that diverse non-integer operator alternatives to the eco-epidemiological predator-prey model result in a range of dynamical behaviors.

Suggested Citation

  • Kumar, Ajay & Kumar, Sunil, 2022. "A study on eco-epidemiological model with fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921010511
    DOI: 10.1016/j.chaos.2021.111697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 111-119.
    2. Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Kumar, Sunil & Kumar, Ajay & Samet, Bessem & Gómez-Aguilar, J.F. & Osman, M.S., 2020. "A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Iqbal, Muhammad Kashif & Abbas, Muhammad & Wasim, Imtiaz, 2018. "New cubic B-spline approximation for solving third order Emden–Flower type equations," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 319-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matouk, A.E. & Lahcene, Bachioua, 2023. "Chaotic dynamics in some fractional predator–prey models via a new Caputo operator based on the generalised Gamma function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Ajay Kumar & Sara Salem Alzaid & Badr Saad T. Alkahtani & Sunil Kumar, 2022. "Complex Dynamic Behaviour of Food Web Model with Generalized Fractional Operator," Mathematics, MDPI, vol. 10(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Ziyang & Zhang, Xingdong & Wang, Shuo & Yao, Lin, 2022. "Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Ravichandran, C. & Sowbakiya, V. & Nisar, Kottakkaran Sooppy, 2022. "Study on existence and data dependence results for fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    5. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2021. "Dynamical Analysis of Bio-Ethanol Production Model under Generalized Nonlocal Operator in Caputo Sense," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    8. Mansal, Fulgence & Sene, Ndolane, 2020. "Analysis of fractional fishery model with reserve area in the context of time-fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Liao, Xiaozhong & Ran, Manjie & Yu, Donghui & Lin, Da & Yang, Ruocen, 2022. "Chaos analysis of Buck converter with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Das, Parthasakha & Das, Samhita & Das, Pritha & Rihan, Fathalla A. & Uzuntarla, Muhammet & Ghosh, Dibakar, 2021. "Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Ajay Kumar & Sara Salem Alzaid & Badr Saad T. Alkahtani & Sunil Kumar, 2022. "Complex Dynamic Behaviour of Food Web Model with Generalized Fractional Operator," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    13. Liu, Xuan & Ullah, Saif & Alshehri, Ahmed & Altanji, Mohamed, 2021. "Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    14. Owolabi, Kolade M., 2018. "Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 127-134.
    15. Owolabi, Kolade M. & Atangana, Abdon, 2018. "Chaotic behaviour in system of noninteger-order ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 362-370.
    16. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Ishtiaq Ali & Muhammad Yaseen & Muhammad Abdullah & Sana Khan & Fethi Bin Muhammad Belgacem, 2023. "An Innovative Numerical Method Utilizing Novel Cubic B-Spline Approximations to Solve Burgers’ Equation," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    18. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    19. Jan, Rashid & Khan, Muhammad Altaf & Kumam, Poom & Thounthong, Phatiphat, 2019. "Modeling the transmission of dengue infection through fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 189-216.
    20. Okuonghae, D. & Omame, A., 2020. "Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921010511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.