IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920303696.html
   My bibliography  Save this article

An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative

Author

Listed:
  • Kolebaje, Olusola
  • Popoola, Oyebola
  • Khan, Muhammad Altaf
  • Oyewande, Oluwole

Abstract

Insurgency is a large loophole to any nation’s finances because of the monumental costs associated with fighting it. In this study, an epidemiological approach to modeling the dynamics of the spread of insurgents is introduced. Stability analysis of the steady states of the system were performed and the insurgency prevalence number R0, which is analogous to the reproduction number in epidemiological studies was obtained using the next generation matrix method. A fractional version of the model was introduced using the Atangana–Baleanu derivative and numerical simulations were performed for better understanding of the dynamics of the system. For effective counter-insurgency measures, the local and global sensitivity analysis of the insurgency prevalence number R0 and the endemic states with respect to the parameters that define them were performed. Sensitivity analysis shows that counter-insurgency efforts must focus on increasing the recovery rate of insurgents and reducing the rate of radicalization of civilians. The developed model is a suitable tool with great potential for drawing inference in driving counter-insurgency policy making processes.

Suggested Citation

  • Kolebaje, Olusola & Popoola, Oyebola & Khan, Muhammad Altaf & Oyewande, Oluwole, 2020. "An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920303696
    DOI: 10.1016/j.chaos.2020.109970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne P. Hughes, 1995. "A salvo model of warships in missile combat used to evaluate their staying power," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(2), pages 267-289, March.
    2. Jan, Rashid & Khan, Muhammad Altaf & Kumam, Poom & Thounthong, Phatiphat, 2019. "Modeling the transmission of dengue infection through fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 189-216.
    3. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    4. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    5. Tewa, Jean Jules & Dimi, Jean Luc & Bowong, Samuel, 2009. "Lyapunov functions for a dengue disease transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 936-941.
    6. Moshe Kress & Roberto Szechtman, 2009. "Why Defeating Insurgencies Is Hard: The Effect of Intelligence in Counterinsurgency Operations---A Best-Case Scenario," Operations Research, INFORMS, vol. 57(3), pages 578-585, June.
    7. Altaf Khan, Muhammad & Ullah, Saif & Farooq, Muhammad, 2018. "A new fractional model for tuberculosis with relapse via Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 227-238.
    8. S. J. Deitchman, 1962. "A Lanchester Model of Guerrilla Warfare," Operations Research, INFORMS, vol. 10(6), pages 818-827, December.
    9. Michael J Armstrong, 2014. "The salvo combat model with a sequential exchange of fire," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(10), pages 1593-1601, October.
    10. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    11. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    12. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    13. Alzahrani, E.O. & Khan, M.A., 2018. "Modeling the dynamics of Hepatitis E with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 287-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Michael J. Armstrong, 2013. "The salvo combat model with area fire," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 652-660, December.
    3. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    4. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Ishtiaq Ali & Sami Ullah Khan, 2023. "A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    6. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    7. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.
    8. Malik, Hafiz Abid Mahmood & Abid, Faiza & Wahiddin, Mohamed Ridza & Waqas, Ahmad, 2021. "Modeling of internal and external factors affecting a complex dengue network," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Anelí Bongers & José L. Torres, 2017. "Revisiting the Battle of Midway: A counterfactual analysis," Working Papers 2017-01, Universidad de Málaga, Department of Economic Theory, Málaga Economic Theory Research Center.
    10. Manh D Hy & My A Vu & Nam H Nguyen & Anh N Ta & Dinh V Bui, 2020. "Optimization in an asymmetric Lanchester (n, 1) model," The Journal of Defense Modeling and Simulation, , vol. 17(1), pages 117-122, January.
    11. Edward H. Kaplan & Moshe Kress & Roberto Szechtman, 2010. "Confronting Entrenched Insurgents," Operations Research, INFORMS, vol. 58(2), pages 329-341, April.
    12. Anelí Bongers & José L. Torres, 2021. "A bottleneck combat model: an application to the Battle of Thermopylae," Operational Research, Springer, vol. 21(4), pages 2859-2877, December.
    13. Chukwu, C.W. & Fatmawati, & Utoyo, M.I. & Setiawan, A. & Akanni, J.O., 2024. "Fractional model of HIV transmission on workplace productivity using real data from Indonesia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1089-1103.
    14. Kress, Moshe & Caulkins, Jonathan P. & Feichtinger, Gustav & Grass, Dieter & Seidl, Andrea, 2018. "Lanchester model for three-way combat," European Journal of Operational Research, Elsevier, vol. 264(1), pages 46-54.
    15. Moshe Kress, 2020. "Lanchester Models for Irregular Warfare," Mathematics, MDPI, vol. 8(5), pages 1-14, May.
    16. Younglak Shim & Michael P. Atkinson, 2018. "Analysis of artillery shoot‐and‐scoot tactics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 242-274, April.
    17. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    18. Minati, Ludovico & Frasca, Mattia & Valdes-Sosa, Pedro A. & Barbot, Jean-Pierre & Letellier, Christophe, 2023. "Flatness-based real-time control of experimental analog chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    20. Michael J. Armstrong, 2007. "Effective attacks in the salvo combat model: Salvo sizes and quantities of targets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 66-77, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920303696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.