IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.04990.html
   My bibliography  Save this paper

Series representation of the pricing formula for the European option driven by space-time fractional diffusion

Author

Listed:
  • Jean-Philippe Aguilar
  • Cyril Coste
  • Jan Korbel

Abstract

In this paper, we show that the price of an European call option, whose underlying asset price is driven by the space-time fractional diffusion, can be expressed in terms of rapidly convergent double-series. The series formula can be obtained from the Mellin-Barnes representation of the option price with help of residue summation in $\mathbb{C}^2$. We also derive the series representation for the associated risk-neutral factors, obtained by Esscher transform of the space-time fractional Green functions.

Suggested Citation

  • Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2017. "Series representation of the pricing formula for the European option driven by space-time fractional diffusion," Papers 1712.04990, arXiv.org, revised Oct 2018.
  • Handle: RePEc:arx:papers:1712.04990
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.04990
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kleinert, H. & Korbel, J., 2016. "Option pricing beyond Black–Scholes based on double-fractional diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 200-214.
    2. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    3. Jizba, Petr & Kleinert, Hagen & Haener, Patrick, 2009. "Perturbation expansion for option pricing with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3503-3520.
    4. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    5. Jizba, Petr & Korbel, Jan & Lavička, Hynek & Prokš, Martin & Svoboda, Václav & Beck, Christian, 2018. "Transitions between superstatistical regimes: Validity, breakdown and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 29-46.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Jean-Philippe Aguilar, 2017. "A series representation for the Black-Scholes formula," Papers 1710.01141, arXiv.org, revised Oct 2017.
    9. Laurent E. Calvet & Adlai Fisher, 2008. "Multifractal Volatility: Theory, Forecasting and Pricing," Post-Print hal-00671877, HAL.
    10. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    11. Hagen Kleinert & Jan Korbel, 2015. "Option Pricing Beyond Black-Scholes Based on Double-Fractional Diffusion," Papers 1503.05655, arXiv.org, revised Mar 2016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    2. Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
    3. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    4. Pedro Febrer & João Guerra, 2021. "Residue Sum Formula for Pricing Options under the Variance Gamma Model," Mathematics, MDPI, vol. 9(10), pages 1-29, May.
    5. Jean-Philippe Aguilar & Justin Lars Kirkby & Jan Korbel, 2020. "Pricing, Risk and Volatility in Subordinated Market Models," Risks, MDPI, vol. 8(4), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    2. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    3. Juan M. Romero & Ilse B. Zubieta-Mart'inez, 2016. "Relativistic Quantum Finance," Papers 1604.01447, arXiv.org.
    4. Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
    5. Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2016. "Non-Gaussian analytic option pricing: a closed formula for the L\'evy-stable model," Papers 1609.00987, arXiv.org, revised Nov 2017.
    6. Olkhov, Victor, 2020. "Classical Option Pricing and Some Steps Further," MPRA Paper 105431, University Library of Munich, Germany, revised 28 Dec 2020.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    8. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    9. Connor J.A. Stuart & Sebastian A. Gehricke & Jin E. Zhang & Xinfeng Ruan, 2021. "Implied volatility smirk in the Australian dollar market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4573-4599, September.
    10. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    11. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    12. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    13. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    14. Lin, Zhongguo & Han, Liyan & Li, Wei, 2021. "Option replication with transaction cost under Knightian uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    15. Jean-Philippe Aguilar, 2017. "A series representation for the Black-Scholes formula," Papers 1710.01141, arXiv.org, revised Oct 2017.
    16. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    17. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    18. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    19. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    20. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.04990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.