Non-Gaussian analytic option pricing: a closed formula for the L\'evy-stable model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter Carr & Liuren Wu, 2003.
"The Finite Moment Log Stable Process and Option Pricing,"
Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
- Peter Carr & Liuren Wu, 2002. "The Finite Moment Log Stable Process and Option Pricing," Finance 0207012, University Library of Munich, Germany.
- S. R. Hurst & Eckhard Platen & S. T. Rachev, 1999. "Option pricing for a logstable asset price model," Published Paper Series 1999-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
- Jérémy Poirot & Peter Tankov, 2006. "Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 327-344, December.
- Hagen Kleinert & Jan Korbel, 2015. "Option Pricing Beyond Black-Scholes Based on Double-Fractional Diffusion," Papers 1503.05655, arXiv.org, revised Mar 2016.
- Kleinert, H. & Korbel, J., 2016. "Option pricing beyond Black–Scholes based on double-fractional diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 200-214.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Benoit Mandelbrot, 2015.
"The Variation of Certain Speculative Prices,"
World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78,
World Scientific Publishing Co. Pte. Ltd..
- Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394-394.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jean-Philippe Aguilar & Cyril Coste & Hagen Kleinert & Jan Korbel, 2016. "Regularization and analytic option pricing under $\alpha$-stable distribution of arbitrary asymmetry," Papers 1611.04320, arXiv.org, revised Nov 2016.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
- Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
- Jean-Philippe Aguilar & Cyril Coste & Jan Korbel, 2017. "Series representation of the pricing formula for the European option driven by space-time fractional diffusion," Papers 1712.04990, arXiv.org, revised Oct 2018.
- Jean-Philippe Aguilar & Cyril Coste & Hagen Kleinert & Jan Korbel, 2016. "Regularization and analytic option pricing under $\alpha$-stable distribution of arbitrary asymmetry," Papers 1611.04320, arXiv.org, revised Nov 2016.
- Lombardi, Marco J. & Calzolari, Giorgio, 2009.
"Indirect estimation of [alpha]-stable stochastic volatility models,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.
- Marco Lombardi & Giorgio Calzolari, 2006. "Indirect estimation of alpha-stable stochastic volatility models," Econometrics Working Papers Archive wp2006_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006.
"Pricing and Inference with Mixtures of Conditionally Normal Processes,"
Working Papers
2006-28, Center for Research in Economics and Statistics.
- Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
- Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
- Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
- Climent Hernández José Antonio & Venegas Martínez Francisco, 2013. "Valuación de opciones sobre subyacentes con rendimientos a-estables," Contaduría y Administración, Accounting and Management, vol. 58(4), pages 119-150, octubre-d.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Nuugulu, Samuel M & Gideon, Frednard & Patidar, Kailash C, 2021. "A robust numerical scheme for a time-fractional Black-Scholes partial differential equation describing stock exchange dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Giulia Di Nunno & Kęstutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From Constant to Rough: A Survey of Continuous Volatility Modeling," Mathematics, MDPI, vol. 11(19), pages 1-35, October.
- J. Huston McCulloch, 2004. "The Risk-Neutral Measure and Option Pricing under Log-Stable Uncertainty using Romberg Fourier Inversion," Computing in Economics and Finance 2004 13, Society for Computational Economics.
- Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022.
"Tempered stable processes with time-varying exponential tails,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
- Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Papers 2006.07669, arXiv.org, revised Aug 2020.
- Raphaël Douady & Young Shin Kim & Kum-Hwan Roh, 2021. "Tempered stable processes with time-varying exponential tails," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03512709, HAL.
- Young Shin Aaron Kim & Kum-Hwan Roh & Raphaël Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03018495, HAL.
- Raphaël Douady & Young Shin Kim & Kum-Hwan Roh, 2021. "Tempered stable processes with time-varying exponential tails," Post-Print hal-03512709, HAL.
- Young Shin Aaron Kim & Kum-Hwan Roh & Raphaël Douady, 2020. "Tempered Stable Processes with Time Varying Exponential Tails," Working Papers hal-03018495, HAL.
- Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
- Liuren Wu, 2006.
"Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns,"
The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
- Liuren Wu, 2004. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," Finance 0401001, University Library of Munich, Germany.
- Juan M. Romero & Ilse B. Zubieta-Mart'inez, 2016. "Relativistic Quantum Finance," Papers 1604.01447, arXiv.org.
- Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
- Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
- Jean-Philippe Aguilar, 2017. "A series representation for the Black-Scholes formula," Papers 1710.01141, arXiv.org, revised Oct 2017.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1609.00987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.