Mode decomposition method integrating mode reconstruction, feature extraction, and ELM for tourist arrival forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.110423
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- Jun, Wang & Yuyan, Luo & Lingyu, Tang & Peng, Ge, 2018. "Modeling a combined forecast algorithm based on sequence patterns and near characteristics: An application for tourism demand forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 136-147.
- Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
- Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
- Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
- Witt, Stephen F. & Witt, Christine A., 1995. "Forecasting tourism demand: A review of empirical research," International Journal of Forecasting, Elsevier, vol. 11(3), pages 447-475, September.
- Assaf, A. George & Tsionas, Mike G., 2019. "Forecasting occupancy rate with Bayesian compression methods," Annals of Tourism Research, Elsevier, vol. 75(C), pages 439-449.
- Law, Rob & Li, Gang & Fong, Davis Ka Chio & Han, Xin, 2019. "Tourism demand forecasting: A deep learning approach," Annals of Tourism Research, Elsevier, vol. 75(C), pages 410-423.
- Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
- Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Yaoyao & Wang, Yun & Wang, Shuo & Yao, Xin, 2022. "A cooperative ensemble method for multistep wind speed probabilistic forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Yang & Fan, Yawen & Jiang, Lan & Liu, Xiaohui, 2022. "Search query and tourism forecasting during the pandemic: When and where can digital footprints be helpful as predictors?," Annals of Tourism Research, Elsevier, vol. 93(C).
- Jaume Rosselló Nadal & María Santana Gallego, 2022. "Gravity models for tourism demand modeling: Empirical review and outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 36(5), pages 1358-1409, December.
- Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
- El houssin Ouassou & Hafsa Taya, 2022. "Forecasting Regional Tourism Demand in Morocco from Traditional and AI-Based Methods to Ensemble Modeling," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
- Jun, Wang & Yuyan, Luo & Lingyu, Tang & Peng, Ge, 2018. "Modeling a combined forecast algorithm based on sequence patterns and near characteristics: An application for tourism demand forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 136-147.
- Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
- Zhang, Yishuo & Li, Gang & Muskat, Birgit & Law, Rob & Yang, Yating, 2020. "Group pooling for deep tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 82(C).
- Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
- Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
- Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
- Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
- Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
- Llano, Carlos & Pardo, Juan & Pérez-Balsalobre, Santiago & Pérez, Julián, 2023. "Estimating multicountry tourism flows by transport mode," Annals of Tourism Research, Elsevier, vol. 103(C).
- Marisol Valencia Cárdenas & Juan Gabriel Vanegas López & Juan Carlos Correa Morales & Jorge Aníbal Restrepo Morales, 2017. "Comparing forecasts for tourism dynamics in Medellín, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 199-230, Enero - J.
- Chengyuan Zhang & Fuxin Jiang & Shouyang Wang & Shaolong Sun, 2020. "A New Decomposition Ensemble Approach for Tourism Demand Forecasting: Evidence from Major Source Countries," Papers 2002.09201, arXiv.org.
- Valencia Cárdenas, Marisol & Vanegas López, Juan Gabriel & Correa Morales, Juan Carlos & Restrepo Morales, Jorge Aníbal, 2016. "Comparación de pronósticos para la dinámica del turismo en Medellín, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 199-230, December.
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
More about this item
Keywords
Ensemble empirical mode decomposition; feature extraction; extreme learning machine; NARX (nonlinear auto regressive models with exogenous inputs); tourist arrival forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s096007792030816x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.