IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v80y2011i4p519-528.html
   My bibliography  Save this article

Stochastic resonance in a locally excited system of bistable oscillators

Author

Listed:
  • M. Gosak
  • M. Perc
  • S. Kralj

Abstract

Stochastic resonance is studied in a one-dimensional array of overdamped bistable oscillators in the presence of a local subthreshold periodic perturbation. The system can be treated as an ensemble of pseudospins tending to align parallel which are driven dynamically by an external periodic magnetic field. The oscillators are subjected to a dynamic white noise as well as to a static topological disorder. The latter is quantified by the fraction of randomly added long-range connections among ensemble elements. In the low connectivity regime the system displays an optimal global stochastic resonance response if a small-world network is formed. In the mean-field regime we explain strong changes in the dynamic disorder strength provoking a maximal stochastic resonance response via the variation of fraction of long-range connections by taking into account the ferromagnetic-paramagnetic phase transition of the pseudospins. The system size analysis shows only quantitative power-law type changes on increasing number of pseudospins. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Suggested Citation

  • M. Gosak & M. Perc & S. Kralj, 2011. "Stochastic resonance in a locally excited system of bistable oscillators," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 80(4), pages 519-528, April.
  • Handle: RePEc:spr:eurphb:v:80:y:2011:i:4:p:519-528
    DOI: 10.1140/epjb/e2011-10573-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2011-10573-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2011-10573-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Tianchi & Song, Di & Shen, Junxian & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries and time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Šimonka, Vito & Fras, Maja & Gosak, Marko, 2015. "Stochastic simulation of the circadian rhythmicity in the SCN neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 1-10.
    3. Zeng, Lingzao & Li, Jianlong & Shi, Jiachun, 2012. "M-ary signal detection via a bistable system in the presence of Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 378-382.
    4. Ma, Tianchi & Shen, Junxian & Song, Di & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries driven by multiplicative and additive noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2020. "Study on the optimal stochastic resonance of different bistable potential models based on output saturation characteristic and application," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Wang, Li & Gong, Yubing & Lin, Xiu, 2012. "Ordered chaotic bursting and multiple coherence resonance by time-periodic coupling strength in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 131-136.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:80:y:2011:i:4:p:519-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.