IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp1296-1312.html
   My bibliography  Save this article

Stochastic resonance across bifurcations in an asymmetric system

Author

Listed:
  • Bi, Haohao
  • Lei, Youming
  • Han, Yanyan

Abstract

Stochastic resonance across bifurcations in a non-smooth system with an asymmetric potential under colored noise excitations is investigated. The asymmetry of the potential leads to complex bifurcations in the system. When the system moves across different bifurcation regions, the adiabatic elimination theory and linear response theory are used to analyze the mean first passage time and stochastic resonance. It is shown that multistability of the system reduces the mean first passage time between the two steady states. The mean first passage time in two opposite directions is different caused by the asymmetry of the system and exhibits a suppression platform as the bifurcation parameter varies. For the stochastic resonance, the multistability of the system increases two response amplitudes, but the asymmetry of the potential decreases one response amplitude, while retaining the other response amplitude. Moreover, in two bifurcation regions, the effects of the correlation time of the colored noise on the response amplitudes are different since the system undergoes a saddle–node bifurcation and a pitchfork bifurcation, respectively.

Suggested Citation

  • Bi, Haohao & Lei, Youming & Han, Yanyan, 2019. "Stochastic resonance across bifurcations in an asymmetric system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1296-1312.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1296-1312
    DOI: 10.1016/j.physa.2019.03.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119303449
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
    2. Liu, Kaihe & Jin, Yanfei, 2013. "Stochastic resonance in periodic potentials driven by colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5283-5288.
    3. Wang, Kang-Kang & Ju, Lin & Wang, Ya-Jun & Li, Sheng-Hong, 2018. "Impact of colored cross-correlated non-Gaussian and Gaussian noises on stochastic resonance and stochastic stability for a metapopulation system driven by a multiplicative signal," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 166-181.
    4. Han, Qinglin & Yang, Tao & Zeng, Chunhua & Wang, Hua & Liu, Zhiqiang & Fu, Yunchang & Zhang, Chun & Tian, Dong, 2014. "Impact of time delays on stochastic resonance in an ecological system describing vegetation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 96-105.
    5. Shi, Peiming & Xia, Haifeng & Han, Dongying & Fu, Rongrong & Yuan, Danzhen, 2018. "Stochastic resonance in a time polo-delayed asymmetry bistable system driven by multiplicative white noise and additive color noise," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 8-14.
    6. Christopher Grossert & Martin Leder & Sergey Denisov & Peter Hänggi & Martin Weitz, 2016. "Experimental control of transport resonances in a coherent quantum rocking ratchet," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    7. Bai, Chunyan, 2018. "Time delay effects of stochastic resonance induced by multiplicative periodic signal in the gene transcriptional regulatory model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 304-311.
    8. Xu, Pengfei & Jin, Yanfei, 2018. "Stochastic resonance in multi-stable coupled systems driven by two driving signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1281-1289.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2020. "Study on the optimal stochastic resonance of different bistable potential models based on output saturation characteristic and application," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Shi, Peiming & Zhang, Wenyue & Han, Dongying & Li, Mengdi, 2019. "Stochastic resonance in a high-order time-delayed feedback tristable dynamic system and its application," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 155-166.
    4. Liu, Jian & Cao, Jie & Wang, Youguo & Hu, Bing, 2019. "Asymmetric stochastic resonance in a bistable system driven by non-Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 321-336.
    5. Xu, Pengfei & Jin, Yanfei & Zhang, Yanxia, 2019. "Stochastic resonance in an underdamped triple-well potential system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 352-362.
    6. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    7. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    8. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    9. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    10. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    11. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    12. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    13. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    14. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    15. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    17. Zhaoxin Cai & Kuntao Zhou & Tao Yang & Shuying Hao, 2023. "Analysis of Dynamic Characteristics of Tristable Exponential Section of Piezoelectric Energy Harvester," Energies, MDPI, vol. 16(18), pages 1-21, September.
    18. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    19. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    20. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1296-1312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.