IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v626y2023ics0378437123005757.html
   My bibliography  Save this article

A study of stochastic resonance in tri-stable generalized Langevin system

Author

Listed:
  • Xu, Pengfei
  • Gong, Xulu
  • Wang, Haotian
  • Li, Yiwei
  • Liu, Di

Abstract

In this work, the phenomenon of stochastic resonance is studied in the tri-stable generalized Langevin system with nonlinear dissipation, which is forced by correlated noises and weak periodic signal. Analytical expression for the spectral amplification is derived in the presence of internal colored noise. The results suggest that memory effects in the tri-stable potential enhance signal amplification. There is appropriate asymmetric tri-stable potential for which stochastic resonance is optimum. Moreover, as the internal and external noises are correlated, the stochastic multi-resonance is found by simulating signal-to-noise ratio. The effect of stochastic resonance is enlarged in low-temperature domain. Specifically, the suitable choice of cross-correlation strength and nonlinear stiffness coefficients can substantially improve the response of the system to an external periodic signal. Finally, the proposed method is applied to bearing fault detection by using frequency-shifted and re-scaling transformation. It is demonstrated that the performance of extracting fault characteristics can be extremely enhanced thanks to the stochastic resonance system with memory and noise correlation.

Suggested Citation

  • Xu, Pengfei & Gong, Xulu & Wang, Haotian & Li, Yiwei & Liu, Di, 2023. "A study of stochastic resonance in tri-stable generalized Langevin system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
  • Handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123005757
    DOI: 10.1016/j.physa.2023.129020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123005757
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avishek Chowdhury & Marcel G. Clerc & Sylvain Barbay & Isabelle Robert-Philip & Remy Braive, 2020. "Weak signal enhancement by nonlinear resonance control in a forced nano-electromechanical resonator," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Xu, Pengfei & Jin, Yanfei, 2018. "Mean first-passage time in a delayed tristable system driven by correlated multiplicative and additive white noises," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 75-82.
    3. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Yunjiang Liu & Fuzhong Wang & Lu Liu & Yamin Zhu, 2019. "Symmetry tristable stochastic resonance induced by parameter under levy noise background," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(8), pages 1-8, August.
    5. Wang, Can-Jun & Yang, Ke-Li & Du, Chun-Yan, 2017. "Multiple cross-correlation noise induced transition in a stochastic bistable system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 261-274.
    6. Xu, Pengfei & Jin, Yanfei & Zhang, Yanxia, 2019. "Stochastic resonance in an underdamped triple-well potential system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 352-362.
    7. Lallart, Mickaël & Zhou, Shengxi & Yang, Zhichun & Yan, Linjuan & Li, Kui & Chen, Yu, 2020. "Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters," Applied Energy, Elsevier, vol. 266(C).
    8. Xu, Pengfei & Jin, Yanfei, 2022. "Diffusive behavior of a coupled generalized Langevin system under bounded noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Czechowski, Zbigniew & Telesca, Luciano, 2024. "Effect of nonlinearity of discrete Langevin model on behavior of extremes in generated time series," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Zhu, Jinjie & Zhao, Feng & Li, Yang & Liu, Xianbin, 2024. "Rotational stochastic resonance in multistable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Zhu, Jinjie & Zhao, Feng & Li, Yang & Liu, Xianbin, 2024. "Rotational stochastic resonance in multistable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    4. Shi, Peiming & Zhang, Wenyue & Han, Dongying & Li, Mengdi, 2019. "Stochastic resonance in a high-order time-delayed feedback tristable dynamic system and its application," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 155-166.
    5. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).
    6. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    8. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    9. Wei, Wei & Xu, Wei & Liu, Jiankang, 2021. "Stochastic P-bifurcation analysis of a class of nonlinear Markov jump systems under combined harmonic and random excitations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Gong, Xulu & Xu, Pengfei & Liu, Di & Zhou, Biliu, 2023. "Stochastic resonance of multi-stable energy harvesting system with high-order stiffness from rotational environment," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Li, Jiangcheng & Zhang, Chunmin & Liu, Jifa & Li, Zhen & Yang, Xuan, 2018. "An application of Mean Escape Time and metapopulation on forestry catastrophe insurance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 312-323.
    12. Chao Zhang & Haoran Duan & Yu Xue & Biao Zhang & Bin Fan & Jianguo Wang & Fengshou Gu, 2020. "The Enhancement of Weak Bearing Fault Signatures by Stochastic Resonance with a Novel Potential Function," Energies, MDPI, vol. 13(23), pages 1-15, December.
    13. Bashkirtseva, Irina & Ryashko, Lev, 2022. "Stochastic generation and shifts of phantom attractors in the 2D Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    17. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    19. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    20. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123005757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.