IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304847.html
   My bibliography  Save this article

Statistically-based methodology for revealing real contagion trends and correcting delay-induced errors in the assessment of COVID-19 pandemic

Author

Listed:
  • Contreras, Sebastián
  • Biron-Lattes, Juan Pablo
  • Villavicencio, H. Andrés
  • Medina-Ortiz, David
  • Llanovarced-Kawles, Nyna
  • Olivera-Nappa, Álvaro

Abstract

COVID-19 pandemic has reshaped our world in a timescale much shorter than what we can understand. Particularities of SARS-CoV-2, such as its persistence in surfaces and the lack of a curative treatment or vaccine against COVID-19, have pushed authorities to apply restrictive policies to control its spreading. As data drove most of the decisions made in this global contingency, their quality is a critical variable for decision-making actors, and therefore should be carefully curated. In this work, we analyze the sources of error in typically reported epidemiological variables and usual tests used for diagnosis, and their impact on our understanding of COVID-19 spreading dynamics. We address the existence of different delays in the report of new cases, induced by the incubation time of the virus and testing-diagnosis time gaps, and other error sources related to the sensitivity/specificity of the tests used to diagnose COVID-19. Using a statistically-based algorithm, we perform a temporal reclassification of cases to avoid delay-induced errors, building up new epidemiologic curves centered in the day where the contagion effectively occurred. We also statistically enhance the robustness behind the discharge/recovery clinical criteria in the absence of a direct test, which is typically the case of non-first world countries, where the limited testing capabilities are fully dedicated to the evaluation of new cases. Finally, we applied our methodology to assess the evolution of the pandemic in Chile through the Effective Reproduction Number Rt, identifying different moments in which data was misleading governmental actions. In doing so, we aim to raise public awareness of the need for proper data reporting and processing protocols for epidemiological modelling and predictions.

Suggested Citation

  • Contreras, Sebastián & Biron-Lattes, Juan Pablo & Villavicencio, H. Andrés & Medina-Ortiz, David & Llanovarced-Kawles, Nyna & Olivera-Nappa, Álvaro, 2020. "Statistically-based methodology for revealing real contagion trends and correcting delay-induced errors in the assessment of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304847
    DOI: 10.1016/j.chaos.2020.110087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Contreras, Sebastián & Villavicencio, H. Andrés & Medina-Ortiz, David & Biron-Lattes, Juan Pablo & Olivera-Nappa, Álvaro, 2020. "A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Freire-Flores, Danton & Llanovarced-Kawles, Nyna & Sanchez-Daza, Anamaria & Olivera-Nappa, Álvaro, 2021. "On the heterogeneous spread of COVID-19 in Chile," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Kox, Henk L.M., 2021. "Relative infectuousness of asymptomatic and symptomatic COVID-19 infectives - An analytical time table," MPRA Paper 108781, University Library of Munich, Germany, revised 12 Jul 2021.
    3. Shakhany, Mohammad Qaleh & Salimifard, Khodakaram, 2021. "Predicting the dynamical behavior of COVID-19 epidemic and the effect of control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Barraza, Néstor Ruben & Pena, Gabriel & Moreno, Verónica, 2020. "A non-homogeneous Markov early epidemic growth dynamics model. Application to the SARS-CoV-2 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Kanno, Masayasu, 2021. "Risk contagion of COVID-19 in Japanese firms: A network approach," Research in International Business and Finance, Elsevier, vol. 58(C).
    6. Contreras, Sebastian & Oróstica, Karen Y. & Daza-Sanchez, Anamaria & Wagner, Joel & Dönges, Philipp & Medina-Ortiz, David & Jara, Matias & Verdugo, Ricardo & Conca, Carlos & Priesemann, Viola & Oliver, 2023. "Model-based assessment of sampling protocols for infectious disease genomic surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    2. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    4. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    5. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    11. Castillo, Oscar & Melin, Patricia, 2021. "A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Nick James, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Papers 2101.00576, arXiv.org, revised Feb 2021.
    14. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    16. Abu Reza Md. Towfiqul Islam & Md. Hasanuzzaman & Md. Abul Kalam Azad & Roquia Salam & Farzana Zannat Toshi & Md. Sanjid Islam Khan & G. M. Monirul Alam & Sobhy M. Ibrahim, 2021. "Effect of meteorological factors on COVID-19 cases in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9139-9162, June.
    17. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    18. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Yiannakoulias, Nikolaos & Slavik, Catherine E. & Sturrock, Shelby L. & Darlington, J. Connor, 2020. "Open government data, uncertainty and coronavirus: An infodemiological case study," Social Science & Medicine, Elsevier, vol. 265(C).
    20. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.