A non-homogeneous Markov early epidemic growth dynamics model. Application to the SARS-CoV-2 pandemic
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.110297
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Simon, Matthieu, 2020. "SIR epidemics with stochastic infectious periods," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4252-4274.
- Clancy, Damian & O'Neill, Philip, 1998. "Approximation of epidemics by inhomogeneous birth-and-death processes," Stochastic Processes and their Applications, Elsevier, vol. 73(2), pages 233-245, March.
- Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Su, Huishuang & Li, Xue, 2020. "Dynamic behaviors of a two-group stochastic SIRS epidemic model with standard incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Silva, Petrônio C.L. & Batista, Paulo V.C. & Lima, Hélder S. & Alves, Marcos A. & Guimarães, Frederico G. & Silva, Rodrigo C.P., 2020. "COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Ali, Ishtiaq & Ullah Khan, Sami, 2020. "Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Contreras, Sebastián & Biron-Lattes, Juan Pablo & Villavicencio, H. Andrés & Medina-Ortiz, David & Llanovarced-Kawles, Nyna & Olivera-Nappa, Álvaro, 2020. "Statistically-based methodology for revealing real contagion trends and correcting delay-induced errors in the assessment of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022.
"Short-term Covid-19 forecast for latecomers,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
- Marcelo Medeiros & Alexandre Street & Davi Vallad~ao & Gabriel Vasconcelos & Eduardo Zilberman, 2020. "Short-Term Covid-19 Forecast for Latecomers," Papers 2004.07977, arXiv.org, revised Sep 2021.
- Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
- Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
- Đorđević, J. & Papić, I. & Šuvak, N., 2021. "A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
- Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
- Andrés Rodríguez‐Pose & Chiara Burlina, 2021.
"Institutions and the uneven geography of the first wave of the COVID‐19 pandemic,"
Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 728-752, September.
- RodrÃguez-Pose, Andrés & Burlina, Chiara, 2020. "Institutions and the uneven geography of the first wave of the COVID-19 pandemic," CEPR Discussion Papers 15443, C.E.P.R. Discussion Papers.
- Andrés Rodrìguez-Pose & Chiara Burlina, 2020. "Institutions and the uneven geography of the first wave of the COVID-19 pandemic," Discussion Paper series in Regional Science & Economic Geography 2020-09, Gran Sasso Science Institute, Social Sciences, revised Nov 2020.
- Andres Rodriguez-Pose & Chiara Burlina, 2020. "Institutions and the uneven geography of the first wave of the COVID-19 pandemic," Papers in Evolutionary Economic Geography (PEEG) 2051, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2020.
- Rodríguez-Pose, Andrés & Burlina, Chiara, 2021. "Institutions and the uneven geography of the first wave of the COVID-19 pandemic," LSE Research Online Documents on Economics 110454, London School of Economics and Political Science, LSE Library.
- Rodríguez-Pose, Andrés & Burlina, Chiara, 2020. "Institutions and the uneven geography of the first wave of the COVID-19 pandemic," LSE Research Online Documents on Economics 107499, London School of Economics and Political Science, LSE Library.
- Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
- Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
- Li, Jing & Liu, XiaoWen, 2024. "An agent-based simulation model for analyzing and optimizing omni-channel retailing operation decisions," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
- Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
- Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
- Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
- Ishtiaq Ali & Sami Ullah Khan, 2023. "A Dynamic Competition Analysis of Stochastic Fractional Differential Equation Arising in Finance via Pseudospectral Method," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
- Zachariah Sinkala & Vajira Manathunga & Bichaka Fayissa, 2022. "An Epidemic Compartment Model for Economic Policy Directions for Managing Future Pandemic," Papers 2202.05374, arXiv.org.
- Mellacher, Patrick, 2020.
"COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model,"
MPRA Paper
103661, University Library of Munich, Germany.
- Patrick Mellacher, 2020. "COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model," Papers 2011.06289, arXiv.org.
- James, Nick & Menzies, Max, 2023. "Collective infectivity of the pandemic over time and association with vaccine coverage and economic development," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
More about this item
Keywords
Contagion; Markov; Pure birth process; Disease spreading; SARS-CoV-2; Infection rate; Immunization rate; Basic reproduction number; Effective reproduction number; Mean time between infections;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920306937. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.