IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v565y2021ics0378437120308797.html
   My bibliography  Save this article

Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19

Author

Listed:
  • James, Nick
  • Menzies, Max
  • Chan, Jennifer

Abstract

This paper introduces new methods for analysing the extreme and erratic behaviour of time series to evaluate the impact of COVID-19 on cryptocurrency market dynamics. Across 51 cryptocurrencies, we examine extreme behaviour through a study of distribution extremities, and erratic behaviour through structural breaks. First, we analyse the structure of the market as a whole and observe a reduction in self-similarity as a result of COVID-19, particularly with respect to structural breaks in variance. Second, we compare and contrast these two behaviours, and identify individual anomalous cryptocurrencies. Tether (USDT) and TrueUSD (TUSD) are consistent outliers with respect to their returns, while Holo (HOT), NEXO (NEXO), Maker (MKR) and NEM (XEM) are frequently observed as anomalous with respect to both behaviours and time. Even among a market known as consistently volatile, this identifies individual cryptocurrencies that behave most irregularly in their extreme and erratic behaviour and shows these were more affected during the COVID-19 market crisis.

Suggested Citation

  • James, Nick & Menzies, Max & Chan, Jennifer, 2021. "Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  • Handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308797
    DOI: 10.1016/j.physa.2020.125581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308797
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Signatures of crypto-currency market decoupling from the Forex," Papers 1906.07834, arXiv.org, revised Jul 2019.
    2. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    3. Ross, Gordon J., 2015. "Parametric and Nonparametric Sequential Change Detection in R: The cpm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i03).
    4. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    5. Telli, Şahin & Chen, Hongzhuan, 2020. "Structural breaks and trend awareness-based interaction in crypto markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    6. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    7. Ferreira, Paulo & Kristoufek, Ladislav & Pereira, Eder Johnson de Area Leão, 2020. "DCCA and DMCA correlations of cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    9. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    10. Tan, Shay-Kee & Chan, Jennifer So-Kuen & Ng, Kok-Haur, 2020. "On the speculative nature of cryptocurrencies: A study on Garman and Klass volatility measure," Finance Research Letters, Elsevier, vol. 32(C).
    11. Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
    12. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    13. D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
    14. Zaremba, Adam & Kizys, Renatas & Aharon, David Y. & Demir, Ender, 2020. "Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe," Finance Research Letters, Elsevier, vol. 35(C).
    15. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    16. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    17. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    18. Stanis{l}aw Dro.zd.z & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek & Marcin Wk{a}torek, 2019. "Competition of noise and collectivity in global cryptocurrency trading: route to a self-contained market," Papers 1911.08944, arXiv.org, revised Feb 2020.
    19. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    20. Jeffrey Chu & Saralees Nadarajah & Stephen Chan, 2015. "Statistical Analysis of the Exchange Rate of Bitcoin," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    21. Corbet, Shaen & Larkin, Charles & Lucey, Brian, 2020. "The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies," Finance Research Letters, Elsevier, vol. 35(C).
    22. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    23. Lahmiri, Salim & Bekiros, Stelios, 2020. "The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    24. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Multifractal behavior of price and volume changes in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 54-61.
    25. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    26. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    27. Stanis{l}aw Dro.zd.z & Robert Gk{e}barowski & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marcin Wk{a}torek, 2018. "Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects," Papers 1804.05916, arXiv.org, revised Jul 2018.
    28. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    29. Qing He & Junyi Liu & Sizhu Wang & Jishuang Yu, 2020. "The impact of COVID-19 on stock markets," Economic and Political Studies, Taylor & Francis Journals, vol. 8(3), pages 275-288, July.
    30. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2019. "On long memory effects in the volatility measure of Cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 95-100.
    31. Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    32. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    33. Manavi, Seyed Alireza & Jafari, Gholamreza & Rouhani, Shahin & Ausloos, Marcel, 2020. "Demythifying the belief in cryptocurrencies decentralized aspects. A study of cryptocurrencies time cross-correlations with common currencies, commodities and financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    34. Valentin Amrhein & Sander Greenland & Blake McShane, 2019. "Scientists rise up against statistical significance," Nature, Nature, vol. 567(7748), pages 305-307, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James, Nick, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Nick James, 2021. "Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19," Papers 2101.00576, arXiv.org, revised Feb 2021.
    3. Nick James & Max Menzies, 2021. "Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time," Papers 2107.13926, arXiv.org, revised Dec 2021.
    4. Nick James & Max Menzies, 2021. "Efficiency of communities and financial markets during the 2020 pandemic," Papers 2104.02318, arXiv.org, revised Jul 2021.
    5. James, Nick & Chin, Kevin, 2022. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. James, Nick & Menzies, Max & Chin, Kevin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.
    8. Nick James & Max Menzies & Kevin Chin, 2022. "Economic state classification and portfolio optimisation with application to stagflationary environments," Papers 2203.15911, arXiv.org, revised Sep 2022.
    9. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    10. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2021. "Cryptocurrency Market Consolidation in 2020--2021," Papers 2112.06552, arXiv.org.
    11. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    12. Nick James & Max Menzies, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Papers 2307.15402, arXiv.org, revised Sep 2023.
    13. Iqbal, Najaf & Fareed, Zeeshan & Wan, Guangcai & Shahzad, Farrukh, 2021. "Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 73(C).
    14. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Pawe{l} O'swik{e}cimka & Tomasz Stanisz & Marcin Wk{a}torek, 2020. "Complexity in economic and social systems: cryptocurrency market at around COVID-19," Papers 2009.10030, arXiv.org.
    15. Wasiuzzaman, Shaista & Haji Abdul Rahman, Hajah Siti Wardah, 2021. "Performance of gold-backed cryptocurrencies during the COVID-19 crisis," Finance Research Letters, Elsevier, vol. 43(C).
    16. Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.
    17. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Exploring disorder and complexity in the cryptocurrency space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 548-556.
    18. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    19. Assaf, Ata & Charif, Husni & Demir, Ender, 2022. "Information sharing among cryptocurrencies: Evidence from mutual information and approximate entropy during COVID-19," Finance Research Letters, Elsevier, vol. 47(PA).
    20. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2019. "Multifractal behavior of price and volume changes in the cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 54-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.