IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303131.html
   My bibliography  Save this article

Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay

Author

Listed:
  • Ding, Juan-Juan
  • Zhang, Yi

Abstract

Noether symmetry theorem of Herglotz type for time-delayed fractional Birkhoffian system are studied. Firstly, based on the fractional derivative of Riemann-Liouville, the Herglotz variational principle of time-delayed fractional Birkhoffian system is established, and the time-delayed Birkhoff′s equation of Herglotz type is derived. Secondly, the definition and criterion of Herglotz type Noether symmetric transformation of time-delayed fractional Birkhoffian system are established. Thirdly, the Noether′s theorem of the system is proposed and proved, in addition, the inner relationship between Noether symmetries and conservation is accurately explored. Next, the special case of the theorem is discussed, in other words, when the Herglotz generalized variational principle is reduced to the classical variational principle, the result of this paper is degraded into the Noether symmetry theorem of the time-delayed fractional Birkhoffian system. Finally, an example is given.

Suggested Citation

  • Ding, Juan-Juan & Zhang, Yi, 2020. "Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303131
    DOI: 10.1016/j.chaos.2020.109913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
    2. Garra, Roberto & Taverna, Giorgio S. & Torres, Delfim F.M., 2017. "Fractional Herglotz variational principles with generalized Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 94-98.
    3. Tian, Xue & Zhang, Yi, 2019. "Noether’s theorem for fractional Herglotz variational principle in phase space," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 50-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Shi-Xin & Chen, Xiang-Wei & Li, Yan-Min, 2024. "Approximate Noether theorem and its inverse for nonlinear dynamical systems with approximate nonstandard Lagrangian," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Zhang, Yi & Jia, Yun-Die, 2023. "Generalization of Mei symmetry approach to fractional Birkhoffian mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Huang, Li-Qin & Zhang, Yi, 2024. "Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Li-Qin & Zhang, Yi, 2024. "Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Tian, Xue & Zhang, Yi, 2019. "Noether’s theorem for fractional Herglotz variational principle in phase space," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 50-54.
    3. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    4. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    5. Tian, Xue & Zhang, Yi, 2021. "Fractional time-scales Noether theorem with Caputo Δ derivatives for Hamiltonian systems," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Salahshour, S. & Ahmadian, A. & Abbasbandy, S. & Baleanu, D., 2018. "M-fractional derivative under interval uncertainty: Theory, properties and applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 84-93.
    7. Costa, F.S. & Oliveira, D.S. & Rodrigues, F.G. & de Oliveira, E.C., 2019. "The fractional space–time radial diffusion equation in terms of the Fox’s H-function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 403-418.
    8. Abro, Kashif Ali & Abro, Irfan Ali & Yıldırım, Ahmet, 2020. "A comparative analysis of sulfate SO4−2 ion concentration via modern fractional derivatives: An industrial application to cooling system of power plant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. Al-Refai, Mohammed & Jarrah, Abdulla M., 2019. "Fundamental results on weighted Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 7-11.
    10. Wang, Jieyang & Mou, Jun & Xiong, Li & Zhang, Yingqian & Cao, Yinghong, 2021. "Fractional-order design of a novel non-autonomous laser chaotic system with compound nonlinearity and its circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    12. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 285-294.
    13. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    15. Owolabi, Kolade M., 2021. "Computational analysis of different Pseudoplatystoma species patterns the Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Panwar, Virender Singh & Sheik Uduman, P.S. & Gómez-Aguilar, J.F., 2021. "Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Salahshour, Soheil & Ahmadian, Ali & Allahviranloo, Tofigh, 2021. "A new fractional dynamic cobweb model based on nonsingular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.