IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v89y2016icp539-546.html
   My bibliography  Save this article

Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order

Author

Listed:
  • Alkahtani, B.S.T.
  • Atangana, A.

Abstract

In order to control the movement of waves on the area of shallow water, the newly derivative with fractional order proposed by Caputo and Fabrizio was used. To achieve this, we first proposed a transition from ordinary to fractional differential equation. We proved the existence and uniqueness of the coupled solutions of the modified system using the fixed-point theorem. We derive the special solution of the modified system using an iterative method. We proved the stability of the used method and also the uniqueness of the special solution. We presented the numerical simulations for different values of alpha.

Suggested Citation

  • Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
  • Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:539-546
    DOI: 10.1016/j.chaos.2016.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan Bulut & Haci Mehmet Baskonus & Fethi Bin Muhammad Belgacem, 2013. "The Analytical Solution of Some Fractional Ordinary Differential Equations by the Sumudu Transform Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-6, September.
    2. Abdon Atangana & Necdet Bildik, 2013. "The Use of Fractional Order Derivative to Predict the Groundwater Flow," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 285-294.
    2. Costa, F.S. & Oliveira, D.S. & Rodrigues, F.G. & de Oliveira, E.C., 2019. "The fractional space–time radial diffusion equation in terms of the Fox’s H-function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 403-418.
    3. Ding, Juan-Juan & Zhang, Yi, 2020. "Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Panwar, Virender Singh & Sheik Uduman, P.S. & Gómez-Aguilar, J.F., 2021. "Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    6. Owolabi, Kolade M., 2021. "Computational analysis of different Pseudoplatystoma species patterns the Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    8. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Tian, Xue & Zhang, Yi, 2019. "Noether’s theorem for fractional Herglotz variational principle in phase space," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 50-54.
    10. Al-Refai, Mohammed & Jarrah, Abdulla M., 2019. "Fundamental results on weighted Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 7-11.
    11. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    12. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    13. Abro, Kashif Ali & Abro, Irfan Ali & Yıldırım, Ahmet, 2020. "A comparative analysis of sulfate SO4−2 ion concentration via modern fractional derivatives: An industrial application to cooling system of power plant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    2. Coronel-Escamilla, A. & Gómez-Aguilar, J.F. & López-López, M.G. & Alvarado-Martínez, V.M. & Guerrero-Ramírez, G.V., 2016. "Triple pendulum model involving fractional derivatives with different kernels," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 248-261.
    3. repec:eur:ejfejr:65 is not listed on IDEAS
    4. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    5. Nazir, Aqsa & Ahmed, Naveed & Khan, Umar & Mohyud-din, Syed Tauseef, 2020. "On stability of improved conformable model for studying the dynamics of a malnutrition community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Ismail, G.M. & Abdl-Rahim, H.R. & Abdel-Aty, A. & Kharabsheh, R. & Alharbi, W. & Abdel-Aty, M., 2020. "An analytical solution for fractional oscillator in a resisting medium," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Abdel-Gawad, Hamdy I. & Baleanu, Dumitru & Abdel-Gawad, Ahmed H., 2021. "Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Singh, Jagdev & Kumar, Devendra & Nieto, Juan J., 2017. "Analysis of an El Nino-Southern Oscillation model with a new fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 109-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:539-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.