IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v374y2020ics0096300320300308.html
   My bibliography  Save this article

A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model

Author

Listed:
  • Arshad, Sadia
  • Defterli, Ozlem
  • Baleanu, Dumitru

Abstract

In this manuscript we examine the CD4+ T cells model of HIV infection under the consideration of two different fractional differentiation operators namely Caputo and Caputo-Fabrizio (CF). Moreover, the generalized HIV model is investigated by considering Reverse Transcriptase (RT) inhibitors as a drug treatment for HIV. The threshold values for the stability of the equilibrium point belonging to non-infected case are calculated for both models with and without treatment. For the numerical solutions of the studied model, we construct trapezoidal approximation schemes having second order accuracy for the approximation of fractional operators with singular and non-singular kernel. The stability and convergence of the proposed schemes are analyzed analytically. To illustrate the dynamics given by these two fractional operators, we perform numerical simulations of the HIV model for different biological scenarios with and without drug concentration. The studied biological cases are identified by considering different values of the parameters such as infection rate, growth rate of CD4+ T cells, clearance rate of virus particles and also the order of the fractional derivative.

Suggested Citation

  • Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:apmaco:v:374:y:2020:i:c:s0096300320300308
    DOI: 10.1016/j.amc.2020.125061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Cristiana J. & Torres, Delfim F.M., 2019. "Stability of a fractional HIV/AIDS model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 180-190.
    2. Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
    3. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    4. Pinto, Carla M.A. & Carvalho, Ana R.M., 2017. "The role of synaptic transmission in a HIV model with memory," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 76-95.
    5. David D. Ho & Avidan U. Neumann & Alan S. Perelson & Wen Chen & John M. Leonard & Martin Markowitz, 1995. "Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection," Working Papers 95-01-002, Santa Fe Institute.
    6. Wang, Yan & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "A stochastic HIV infection model with T-cell proliferation and CTL immune response," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 477-493.
    7. Ashley T. Haase & Keith Henry & Mary Zupancic & Gerlad Sedgewick & Russell A. Faust & Holly Melroe & Winston Cavert & Kristin Gebhard & Katherine Staskus & Zhi-Qiang Zhang & Peter J. Dailey & Henry H., 1996. "Quantitative Image Analysis of HIV-1 Infection in Lymphoid Tissue," Working Papers 96-07-045, Santa Fe Institute.
    8. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    9. Jiang, Daqing & Liu, Qun & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed & Xia, Peiyan, 2017. "Dynamics of a stochastic HIV-1 infection model with logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 706-717.
    10. Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
    11. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Goyal, Manish & Baskonus, Haci Mehmet & Prakash, Amit, 2020. "Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash, M. & Rakkiyappan, R. & Manivannan, A. & Cao, Jinde, 2019. "Dynamical analysis of antigen-driven T-cell infection model with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 266-281.
    2. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    3. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.
    4. Cheng, Yan & Li, Mingtao & Zhang, Fumin, 2019. "A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 62-70.
    5. Christian L Althaus & Beda Joos & Alan S Perelson & Huldrych F Günthard, 2014. "Quantifying the Turnover of Transcriptional Subclasses of HIV-1-Infected Cells," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-11, October.
    6. Shi, Ruiqing & Lu, Ting & Wang, Cuihong, 2021. "Dynamic analysis of a fractional-order model for HIV with drug-resistance and CTL immune response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 509-536.
    7. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    8. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    9. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    10. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    11. Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
    12. Zhang, Tongqian & Xu, Xinna & Wang, Xinzeng, 2023. "Dynamic analysis of a cytokine-enhanced viral infection model with time delays and CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. James B Gilmore & Anthony D Kelleher & David A Cooper & John M Murray, 2013. "Explaining the Determinants of First Phase HIV Decay Dynamics through the Effects of Stage-dependent Drug Action," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    15. Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
    16. Rebecca M. D'Amato & Richard T. D'Aquila & Lawrence M. Wein, 2000. "Management of Antiretroviral Therapy for HIV Infection: Analyzing When to Change Therapy," Management Science, INFORMS, vol. 46(9), pages 1200-1213, September.
    17. Chen, Wei & Zhang, Long & Wang, Ning & Teng, Zhidong, 2024. "Bifurcation analysis and chaos for a double-strains HIV coinfection model with intracellular delays, saturated incidence and Logistic growth," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 617-641.
    18. Wein, Lawrence M. & D'Amato, Rebecca M. & Perelman, Alan S., 1947-, 1997. "Mathematical considerations of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads," Working papers WP 3939-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.
    20. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:374:y:2020:i:c:s0096300320300308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.