IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp94-98.html
   My bibliography  Save this article

Fractional Herglotz variational principles with generalized Caputo derivatives

Author

Listed:
  • Garra, Roberto
  • Taverna, Giorgio S.
  • Torres, Delfim F.M.

Abstract

We obtain Euler–Lagrange equations, transversality conditions and a Noether-like theorem for Herglotz-type variational problems with Lagrangians depending on generalized fractional derivatives. As an application, we consider a damped harmonic oscillator with time-depending mass and elasticity, and arbitrary memory effects.

Suggested Citation

  • Garra, Roberto & Taverna, Giorgio S. & Torres, Delfim F.M., 2017. "Fractional Herglotz variational principles with generalized Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 94-98.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:94-98
    DOI: 10.1016/j.chaos.2017.04.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatiana Odzijewicz & Agnieszka B. Malinowska & Delfim F. M. Torres, 2012. "Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Juan-Juan & Zhang, Yi, 2020. "Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Huang, Li-Qin & Zhang, Yi, 2024. "Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    4. Tian, Xue & Zhang, Yi, 2019. "Noether’s theorem for fractional Herglotz variational principle in phase space," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 50-54.
    5. Salahshour, Soheil & Ahmadian, Ali & Allahviranloo, Tofigh, 2021. "A new fractional dynamic cobweb model based on nonsingular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Salahshour, S. & Ahmadian, A. & Abbasbandy, S. & Baleanu, D., 2018. "M-fractional derivative under interval uncertainty: Theory, properties and applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 84-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Imran Asjad & Saif Ur Rehman & Ali Ahmadian & Soheil Salahshour & Mehdi Salimi, 2021. "First Solution of Fractional Bioconvection with Power Law Kernel for a Vertical Surface," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    2. Goel, Eti & Pandey, Rajesh K. & Yadav, S. & Agrawal, Om P., 2023. "A numerical approximation for generalized fractional Sturm–Liouville problem with application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 417-436.
    3. Baba, Bashir Abdullahi & Bilgehan, Bulent, 2021. "Optimal control of a fractional order model for the COVID – 19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:94-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.