IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924004065.html
   My bibliography  Save this article

Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments

Author

Listed:
  • Huang, Li-Qin
  • Zhang, Yi

Abstract

The Herglotz-type vakonomic dynamics of nonholonomic constrained systems with delayed arguments and its Noether theory are studied in this paper. First of all, the Herglotz-type equations of time-delayed vakonomic dynamics for nonholonomic systems are established, and the Herglotz-type local extremal equations are given. Secondly, on the basis of derivation of the variational formulas of Hamilton–Herglotz action with time delay, the Herglotz-type Noether symmetry criteria for time-delayed vakonomic dynamics are investigated. Thirdly, the Herglotz-type Noether’s theorems and inverse theorems for time-delayed vakonomic dynamics of nonholonomic systems are deduced. Finally, an example is presented to demonstrate the application of the results.

Suggested Citation

  • Huang, Li-Qin & Zhang, Yi, 2024. "Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004065
    DOI: 10.1016/j.chaos.2024.114854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi-Xin Jin & Yi Zhang, 2015. "Noether Theorem for Nonholonomic Systems with Time Delay," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, April.
    2. Garra, Roberto & Taverna, Giorgio S. & Torres, Delfim F.M., 2017. "Fractional Herglotz variational principles with generalized Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 94-98.
    3. Ding, Juan-Juan & Zhang, Yi, 2020. "Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Tian, Xue & Zhang, Yi, 2019. "Noether’s theorem for fractional Herglotz variational principle in phase space," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 50-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Juan-Juan & Zhang, Yi, 2020. "Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Tian, Xue & Zhang, Yi, 2021. "Fractional time-scales Noether theorem with Caputo Δ derivatives for Hamiltonian systems," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Tian, Xue & Zhang, Yi, 2019. "Noether’s theorem for fractional Herglotz variational principle in phase space," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 50-54.
    4. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    5. Zhang, Yi & Jia, Yun-Die, 2023. "Generalization of Mei symmetry approach to fractional Birkhoffian mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Jin, Shi-Xin & Chen, Xiang-Wei & Li, Yan-Min, 2024. "Approximate Noether theorem and its inverse for nonlinear dynamical systems with approximate nonstandard Lagrangian," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Salahshour, S. & Ahmadian, A. & Abbasbandy, S. & Baleanu, D., 2018. "M-fractional derivative under interval uncertainty: Theory, properties and applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 84-93.
    8. Wang, Jieyang & Mou, Jun & Xiong, Li & Zhang, Yingqian & Cao, Yinghong, 2021. "Fractional-order design of a novel non-autonomous laser chaotic system with compound nonlinearity and its circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Salahshour, Soheil & Ahmadian, Ali & Allahviranloo, Tofigh, 2021. "A new fractional dynamic cobweb model based on nonsingular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.