IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077921002393.html
   My bibliography  Save this article

Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances

Author

Listed:
  • Cai, Rui-Yang
  • Zhou, Hua-Cheng
  • Kou, Chun-Hai

Abstract

This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.

Suggested Citation

  • Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002393
    DOI: 10.1016/j.chaos.2021.110886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921002393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Stabilization of a class of fractional order chaotic systems via backstepping approach," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 56-62.
    2. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    3. Jiang, Jingfei & Guirao, Juan Luis García & Chen, Huatao & Cao, Dengqing, 2019. "The boundary control strategy for a fractional wave equation with external disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 92-97.
    4. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    5. Alkahtani, B.S.T. & Atangana, A., 2016. "Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 539-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Rui-Yang & Cheng, Lan & Zhou, Hua-Cheng, 2024. "Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Chen, Juan & Zhou, Hua-Cheng & Zhuang, Bo & Xu, Ming-Hua, 2023. "Active disturbance rejection control to stabilization of coupled delayed time fractional-order reaction–advection–diffusion systems with boundary disturbances and spatially varying coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Cai, Rui-Yang & Zhou, Hua-Cheng & Kou, Chun-Hai, 2021. "Mittag-Leffler stabilization of fractional infinite dimensional systems with finite dimensional boundary controller," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1176-1185.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepika, Deepika & Kaur, Sandeep & Narayan, Shiv, 2018. "Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 196-203.
    2. Al-Refai, Mohammed & Jarrah, Abdulla M., 2019. "Fundamental results on weighted Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 7-11.
    3. Cai, Xinshan & Liu, Ling & Wang, Yaoyu & Liu, Chongxin, 2021. "A 3D chaotic system with piece-wise lines shape non-hyperbolic equilibria and its predefined-time control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Anand, Pallov & Sharma, Bharat Bhushan, 2020. "Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Runzi Luo & Meichun Huang & Haipeng Su, 2019. "Robust Control and Synchronization of 3-D Uncertain Fractional-Order Chaotic Systems with External Disturbances via Adding One Power Integrator Control," Complexity, Hindawi, vol. 2019, pages 1-11, May.
    6. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    7. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    8. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    11. Abdalla, Bahaaeldin & Abdeljawad, Thabet, 2019. "On the oscillation of Caputo fractional differential equations with Mittag–Leffler nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 173-177.
    12. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    13. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. Coronel-Escamilla, A. & Gómez-Aguilar, J.F. & López-López, M.G. & Alvarado-Martínez, V.M. & Guerrero-Ramírez, G.V., 2016. "Triple pendulum model involving fractional derivatives with different kernels," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 248-261.
    15. Jiaquan Xie & Yongjiang Zheng & Zhongkai Ren & Tao Wang & Guangxian Shen, 2019. "Numerical Vibration Displacement Solutions of Fractional Drawing Self-Excited Vibration Model Based on Fractional Legendre Functions," Complexity, Hindawi, vol. 2019, pages 1-10, December.
    16. Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.
    17. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    18. Ali, Farhad & Murtaza, Saqib & Sheikh, Nadeem Ahmad & Khan, Ilyas, 2019. "Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana–Balaenu and Caputo–Fabrizio fractional models," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 1-15.
    19. Fetecau, C. & Zafar, A.A. & Vieru, D. & Awrejcewicz, J., 2020. "Hydromagnetic flow over a moving plate of second grade fluids with time fractional derivatives having non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Djennadi, Smina & Shawagfeh, Nabil & Abu Arqub, Omar, 2021. "A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077921002393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.