IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v133y2020ics0960077920300369.html
   My bibliography  Save this article

Identifying influential nodes in complex networks from global perspective

Author

Listed:
  • Zhao, Jie
  • Wang, Yunchuan
  • Deng, Yong

Abstract

How to identify influential nodes in complex networks is an open issue. Several centrality measures have been proposed to address this. But these studies concentrate only on only one aspect. To solve this problem, a novel method to identify influential nodes is proposed, which takes into account not only the importance of itself but also the influence of all nodes in the graph into consideration. This approach has superiority in identifying nodes that seem unimportant but are important in the complex network. Besides, it provides a quantitative model to measure the global importance of each node (GIN). The comparison experiments conducted on six different networks illustrate the effectiveness of the proposed method.

Suggested Citation

  • Zhao, Jie & Wang, Yunchuan & Deng, Yong, 2020. "Identifying influential nodes in complex networks from global perspective," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300369
    DOI: 10.1016/j.chaos.2020.109637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920300369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    2. Li, Zhibin & Jia, Danyang & Guo, Hao & Geng, Yini & Shen, Chen & Wang, Zhen & Li, Xuelong, 2019. "The effect of multigame on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 162-167.
    3. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    4. Dai, Zhen & Li, Ping & Chen, Yan & Zhang, Kai & Zhang, Jie, 2019. "Influential node ranking via randomized spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Zhu, Peican & Wang, Xing & Zhi, Qiang & Ma, Jiezhong & Guo, Yangming, 2018. "Analysis of epidemic spreading process in multi-communities," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 231-237.
    6. Wu, Jiehua & Shen, Jing & Zhou, Bei & Zhang, Xiayan & Huang, Bohuai, 2019. "General link prediction with influential node identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 996-1007.
    7. Mo, Hongming & Deng, Yong, 2019. "Identifying node importance based on evidence theory in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
    8. Liu, Jian-Guo & Ren, Zhuo-Ming & Guo, Qiang, 2013. "Ranking the spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4154-4159.
    9. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    10. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    11. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    12. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    13. Wen, Tao & Deng, Yong, 2020. "The vulnerability of communities in complex networks: An entropy approach," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    15. repec:nas:journl:v:115:y:2018:p:30-35 is not listed on IDEAS
    16. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    17. Guo, Tian & Guo, Mi & Zhang, Yan & Liang, Shuanglu, 2019. "The effect of aspiration on the evolution of cooperation in spatial multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 27-32.
    18. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    19. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    20. Ye, Ye & Hang, Xiao Rong & Koh, Jin Ming & Miszczak, Jarosław Adam & Cheong, Kang Hao & Xie, Neng-gang, 2020. "Passive network evolution promotes group welfare in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    21. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    22. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    23. Lv, Zhiwei & Zhao, Nan & Xiong, Fei & Chen, Nan, 2019. "A novel measure of identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 488-497.
    24. Li, Qian & Zhou, Tao & Lü, Linyuan & Chen, Duanbing, 2014. "Identifying influential spreaders by weighted LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 47-55.
    25. Yang, Hanchao & liu, Yujia & Wan, Qian & Deng, Yong, 2019. "A bio-inspired optimal network division method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    26. Zhu, Peican & Wang, Xinyu & Li, Shudong & Guo, Yangming & Wang, Zhen, 2019. "Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 512-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajarathaiah, Koduru & Enduri, Murali Krishna & Anamalamudi, Satish, 2022. "Efficient algorithm for finding the influential nodes using local relative change of average shortest path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Jin, Pengfei & Wang, Saige & Meng, Zheng & Chen, Bin, 2023. "China's lithium supply chains: Network evolution and resilience assessment," Resources Policy, Elsevier, vol. 87(PB).
    5. Zhao, Jie & Wang, Zhen & Yu, Dengxiu & Cao, Jinde & Cheong, Kang Hao, 2024. "Swarm intelligence for protecting sensitive identities in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Liu, Jia-Bao & Zheng, Ya-Qian & Lee, Chien-Chiang, 2024. "Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory," Applied Energy, Elsevier, vol. 357(C).
    7. Wu, Zhaoyan, 2024. "Intermittent control for identifying network topology," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Cao, Huiying & Gao, Chao & Wang, Zhen, 2023. "Ranking academic institutions by means of institution–publication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    10. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    12. Wang, Ying & Zheng, Yunan & Shi, Xuelei & Liu, Yiguang, 2022. "An effective heuristic clustering algorithm for mining multiple critical nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    13. Feipeng Guo & Zifan Wang & Shaobo Ji & Qibei Lu, 2022. "Influential Nodes Identification in the Air Pollution Spatial Correlation Weighted Networks and Collaborative Governance: Taking China’s Three Urban Agglomerations as Examples," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    14. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    15. Yan, Jingjing & Guo, Yaoqi & Zhang, Hongwei, 2024. "The dynamic evolution mechanism of structural dependence characteristics in the global oil trade network," Energy, Elsevier, vol. 303(C).
    16. Li, Jie & Wang, Ying & Zhong, Jilong & Sun, Yun & Guo, Zhijun & Chen, Zhiwei & Fu, Chaoqi, 2022. "Network resilience assessment and reinforcement strategy against cascading failure," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    17. Wang, Longjian & Zheng, Shaoya & Wang, Yonggang & Wang, Longfei, 2021. "Identification of critical nodes in multimodal transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    18. Wang, Longjian & Zhang, Shuichao & Szűcs, Gábor & Wang, Yonggang, 2024. "Identifying the critical nodes in multi-modal transportation network with a traffic demand-based computational method," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    19. Wang, Feifei & Sun, Zejun & Gan, Quan & Fan, Aiwan & Shi, Hesheng & Hu, Haifeng, 2022. "Influential node identification by aggregating local structure information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    4. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    6. Sheng, Jinfang & Dai, Jinying & Wang, Bin & Duan, Guihua & Long, Jun & Zhang, Junkai & Guan, Kerong & Hu, Sheng & Chen, Long & Guan, Wanghao, 2020. "Identifying influential nodes in complex networks based on global and local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Yige Xue & Yong Deng, 2020. "Refined Expected Value Decision Rules under Orthopair Fuzzy Environment," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    8. Zhou, Ming-Yang & Xiong, Wen-Man & Wu, Xiang-Yang & Zhang, Yu-Xia & Liao, Hao, 2018. "Overlapping influence inspires the selection of multiple spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 76-83.
    9. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    10. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    11. Zhang, Jun-li & Fu, Yan-jun & Cheng, Lan & Yang, Yun-yun, 2021. "Identifying multiple influential spreaders based on maximum connected component decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    13. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    14. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    15. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    16. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    17. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    18. Xiao, Feng & Li, Jin & Wei, Bo, 2022. "Cascading failure analysis and critical node identification in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    19. Bian, Tian & Hu, Jiantao & Deng, Yong, 2017. "Identifying influential nodes in complex networks based on AHP," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 422-436.
    20. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:133:y:2020:i:c:s0960077920300369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.